“ 本文主要讨论线性表在多项式计算中的应用,讨论内容涉及到一元n次多项式在计算机中的表示,及多项式相加运算。”
01
在数学上,一个一元n次多项式可以按照升幂写成
Pn(x)= p0 + p1x + p2x2 + …… + pnxn
它由n+1个系数唯一确定。因此,一个一元n次多项式可以用一个线性表P来表示:
P = (p0,p1,p2,……,pn)
多项式每一项的指数隐含在线性表的序号里。假设Q是另外一个一元m次多项式,同样也可以用线性表Q来表示
Q = (q0,q1,q2,q2,……,qm)
如果m
因此,多项式P和Q相加的结果可以用线性表R表示
R =(p0+ q0,p1+ q1,p2+ q2,……,pm+ qm,pm+1,……,pn)
由此可以看出,一元n次多项式在计算机中可以用线性表来表示,其加法运算也可以在线性表的基础上进行。但在实际应用中,多项式的次数可能很高并且变化很大时,使得线性表最大长度很难确定,特别是在处理类似如下多项式时
T(x)= 12x2 + 2x12000+3x30000
虽然多项式只有3项非零元素,但仍然需要一个长度为30000的线性表来表示,造成对内存空间的浪费。在程序设计中,这种浪费是应当避免的。可以考虑用线性表存储多项式每项系数的同时,也存储相应的指数,这样就可以不用存储多项式的非零项了。
一般情况下,一元n次多项式也可以写成
Pn(x)= p1xe1+ p2xe2 + …… + pmxem
其中,pi是指数为ei项的非零系数,并且满足
0<=e1< e2
因此,若用一个长度为m,且每个元素有两个数据项(系数项和指数项)的线性表,便可唯一确定多项式P(x)
P = ((p1,e1),(p1,e2),……,(pm,em))
上面的式子在每项都不为零的情况下,仅只比存储每项系数的方案多存储一倍的数据。但是对于T(x)类的多项式,这种表示将极大节省存储空间。
用线性表存储多项式可以采用两种存储结构,一种是顺序存储结构,一种是链式存储结构。在实际应用中,具体采用什么存储结构,则要视作什么运算而定。一般来说如果仅是求多项式值的运算,宜采用顺序存储结构,当需要修改多项式的系数和值时宜采用链式存储结构。
例如 多项式
P(x)= 12 + 2x3+8x5+11x6
线性表的表示为
P = ((12,0),(2,3),(8,5),(11,6))
一元多项式相加的运算规则非常简单,两个多项式中指数相同的项对应系数相加,若相加的和不为零,则构成相加结果多项式中的一项,所有指数不相同的项均复制到相加结果多项式中。
02
下面用Java语言给出一元多项式表示及加法运算案例。前面讨论过,用线性表存储多项式时,宜采用系数项和指数项同时存储的结构。因此在案例中定义了PolyData类,用于存储多项式的项数据。
package com.milihua.algorithm.lineartable;public class PolyData { /** * 多项式系数项 */ public int coef; /** * 多项式指数项 */ public int expn; /** * 多项式项构造函数 */ PolyData(int coef,int expn){ this.coef = coef; this.expn = expn; } public int getCoef() { return coef; } public void setCoef(int coef) { this.coef = coef; } public int getExpn() { return expn; } public void setExpn(int expn) { this.expn = expn; }}
多项式存储采用LinkedList类,LinkedList是一个双向链表,当数据量很大或者操作很频繁的情况下,添加和删除元素时具有比ArrayList更好的性能。
package com.milihua.algorithm.lineartable;import java.util.Iterator;import java.util.LinkedList;import java.util.Scanner;public class Polynomial { /** * 存储第一个多项式的链表 */ LinkedList polyListOne = new LinkedList(); /** * 存储第二个多项式的链表 */ LinkedList polyListTwo = new LinkedList(); /** * 存储运算结果的多项式链表 */ LinkedList polyListResult = new LinkedList(); /** * 添加数据到链表尾部 * * @param inPolyData * @return */ public void addLastPol(LinkedList list, PolyData inPolyData) { list.addLast(inPolyData); } /** * 添加数据到链表 * * @param inPolyData * @return */ public void addPol(LinkedList list, PolyData inPolyData) { list.add(inPolyData); } /** * 比较每项的指数大小 * * @param aExpen * @param bExpn * @return 0两个指数相等,1第一个链表的指数大,-1第二个链表的指数大 */ public int compExpn(int aExpen, int bExpn) { if (aExpen == bExpn) { return 0; } else if (aExpen > bExpn) { return 1; } else { return -1; } } /** * 两个多项式链表相加 * * @return */ public void addPol() { for (Iterator iter = polyListOne.iterator(); iter.hasNext();) { PolyData poly = iter.next(); for (Iterator iterTwo = polyListTwo.iterator(); iterTwo.hasNext();) { PolyData polyTwo = iterTwo.next(); switch (compExpn(poly.expn, polyTwo.expn)) { case 0: PolyData newPolyData = new PolyData(poly.coef + polyTwo.coef, poly.expn); polyListResult.add(newPolyData); polyListTwo.remove(polyTwo); break; case 1: polyListResult.add(polyTwo); polyListResult.add(poly); polyListTwo.remove(polyTwo); break; case -1: polyListResult.add(poly); polyListResult.add(polyTwo); polyListTwo.remove(polyTwo); break; } break; } } } /** * 遍历链表并显示出来 * * @param list */ public void display(LinkedList list) { for (Iterator iter = list.iterator(); iter.hasNext();) { PolyData poly = iter.next(); System.out.print(poly.getCoef() + "x^" + poly.getExpn() + "+"); } System.out.println(); } public LinkedList getPolyListOne() { return polyListOne; } public void setPolyListOne(LinkedList polyListOne) { this.polyListOne = polyListOne; } public LinkedList getPolyListTwo() { return polyListTwo; } public void setPolyListTwo(LinkedList polyListTwo) { this.polyListTwo = polyListTwo; } public LinkedList getPolyListResult() { return polyListResult; } public void setPolyListResult(LinkedList polyListResult) { this.polyListResult = polyListResult; }}
Polynomial类是案例文件的主要处理类,在类中声明了三个LinkedList类,分别存储第一个多项式、第二个多项式以及两个多项式相加运算的结果。
Polynomial类的addPol()方法用于执行两个多项式的相加运算,具体算法过程是:
(1)遍历第一个多项式;
(2)在遍历过程中,处理每一个单项;
遍历第二个多项式;
比较两个单项式的指数;
若指数相同,则两个单项式的系数相加,并形成新的单项式添加到运算结果列表中;若指数不相同,则两个单项式都添加到运算结果列表中。
addPol算法的执行频率为n*m,n为第一个多项式的单项式个数,m为第二个多项式的单项式个数,其算法复杂度为O(n^2)。
PolynomialTest类为测试类,代码如下:package unittest;import java.util.Scanner;import com.milihua.algorithm.lineartable.PolyData;import com.milihua.algorithm.lineartable.Polynomial;public class PolynomialTest { public static void main(String[] args) { Polynomial poly = new Polynomial(); //声明Scanner变量,并用new运算符实例化Scanner Scanner sc = new Scanner(System.in); System.out.println("----请输入第一个多项式\r\n输入方式为“系数," + "指数”\r\n结束请输入0----"); while(true) { String str = sc.next(); if( str.equals("0") ) { System.out.println("----第一个多项式输入结束----"); break; } String[] strArray = str.split(","); if( strArray.length < 2 ) { System.out.println("----输入的数据格式错误----"); break; } int coef = Integer.parseInt(strArray[0]); int expn = Integer.parseInt(strArray[1]); PolyData polyData = new PolyData(coef,expn); poly.addPol(poly.getPolyListOne(),polyData); } poly.display(poly.getPolyListOne()); System.out.println("----请输入第二个多项式\r\n输入方式为“系数," + "指数”\r\n结束请输入0----"); while(true) { String str = sc.next(); if( str.equals("0") ) { System.out.println("----第二个多项式输入结束----"); break; } String[] strArray = str.split(","); if( strArray.length < 2 ) { System.out.println("----输入的数据格式错误----"); break; } int coef = Integer.parseInt(strArray[0]); int expn = Integer.parseInt(strArray[1]); PolyData polyData = new PolyData(coef,expn); poly.addPol(poly.getPolyListTwo(),polyData); } poly.display(poly.getPolyListTwo()); poly.addPol(); poly.display(poly.getPolyListResult()); }}
用线性表存储一元多项式时,线性表的元素由两部分组成,一部分用于存储多项式的系数项,一部分用于存储多项式的指数项。这种存储结构对指数项很高且变化很大的多项式特别有用。在存储多项式时,线性表的存储结构可以采用顺序存储结构,也可以采用链式存储结构,推荐使用链式存储结构,存储空间灵活其运算方便。
一元多项式相加的运算规则非常简单,两个多项式中指数相同的项对应系数相加,若相加的和不为零,则构成相加结果多项式中的一项,所有指数不相同的项均复制到相加结果多项式中。多项式加法运算的时间复杂度为O(n)或O(n^2),算法不同,其时间复杂度也不同。本文给出的案例时间复杂度为O(n^2),时间复杂度为O(n)的算法,请自行给出。
—END—编程训练营APP创新在线学习模式,学习编程不再半途而废安卓手机应用商店搜索编程训练营下载