时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)

时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)

目录

    • 时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测
TSO-XGBoost,金枪鱼算法优化,XGBoost,时间序列预测。
1.data为数据集,单变量时间序列数据集,优化参数(最大迭代次数,深度,学习率),
2.MainTSO_XGboostTS.m为主程序文件,其他为函数文件,无需运行。
3.命令窗口输出R2、MAE、MAE和RMSEP等评价指标,可在下载区获取数据和程序内容。
注意程序和数据放在一个文件夹,文件夹不可以XGBoost命名,因为有函数已经用过,运行环境为Matlab2018及以上。

  • xgboost是属于boosting家族,在目标函数中使用了二阶泰勒展开并加入了正则,在决策树的生成过程中采用了精确贪心的思路,寻找最佳分裂点的时候,使用了预排序算法,对所有特征都按照特征的数值进行预排序,然后遍历所有特征上的所有分裂点位,计算按照这些候选分裂点位分裂后的全部样本的目标函数增益,找到最大的那个增益对应的特征和候选分裂点位,从而进行分裂。
  • 这样一层一层的完成建树过程, xgboost训练的时候,是通过加法的方式进行训练,也就是每一次通过聚焦残差训练一棵树出来,最后的预测结果是所有树的加和表示。

程序设计

  • 完整源码和数据下载地址:MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  优化算法
[Best_pos, Best_score, curve, avcurve] = TSO(pop, Max_iteration, lb, ub, dim, fun);%%  获取最优参数
num_trees = Best_pos(1, 1);         % 迭代次数
%params.max_depth = Best_pos(1, 2);  % 树的深度
params.max_depth = 18;  % 树的深度
params.eta = Best_pos(1, 3);        % 学习率%%  建立模型
model = xgboost_train(p_train, t_train, params, num_trees);%%  预测
t_sim1 = xgboost_test(p_train, model);
t_sim2 = xgboost_test(p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1', ps_output);
T_sim2 = mapminmax('reverse', t_sim2', ps_output);%% V. 评价指标
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%% 决定系数
R1 = rsquare(T_train,T_sim1);
R2 = rsquare(T_test,T_sim2);MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  适应度曲线
figure
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('TSO适应度变化曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度值', 'FontSize', 10);
grid onaa=0.7;
z=0.05;
while Iter<Max_iterC=Iter/Max_iter;a1=aa+(1-aa)*C;a2=(1-aa)-(1-aa)*C;for i=1:size(T,1)Flag4ub=T(i,:)>ub;Flag4lb=T(i,:)<lb;T(i,:)=(T(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;fitness(i)=fobj(T(i,:));if fitness(i)<Best_scoreBest_score=fitness(i);  Best_pos=T(i,:);endendC_old=T;  fit_old=fitness;%-------------------------------------------------t=(1-Iter/Max_iter)^(Iter/Max_iter);if rand<zT(1,:)= (ub-lb)*rand+lb;elseif  0.5<randr1=rand;Beta=exp(r1*exp(3*cos(pi*((Max_iter-Iter+1)/Max_iter))))*(cos(2*pi*r1));if  C>randT(1,:)=a1.*(Best_pos+Beta*abs(Best_pos-T(1,:)))+a2.*T(1,:); %Equation (8.3)elseIndivRand=rand(1,dim).*(ub-lb)+lb;T(1,:)=a1.*(IndivRand+Beta*abs(IndivRand-T(1,:)=Best_pos+rand(1,dim).*(Best_pos-T(1,:))+TF.*t^2.*(Best_pos-T(1,:));%Equation (9.1)elseT(1,:) =TF.* t^2.*T(1,:);%Equation (9.2)endendendfor i=2:popif rand<zT(i,:)= (ub-lb)*rand+lb;elseif  0.5<randr1=rand;T(i,:)=a1.*(Best_pos+Beta*abs(Best_pos-T(i,:)))+a2.*T(i-1,:);%Equation (8.4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;T(i,:)=a1.*(IndivRand+Beta*abs(IndivRand-T(i,:)))+a2.*T(i-1,:);%Equation (8.2)endelseTF = (rand>0.5)*2-1;if 0.5>randT(i,:)=Best_pos+rand(1,dim).*(Best_pos-T(i,:))+TF*t^2.*(Best_pos-T(i,:)); %Equation (9.1)elseT(i,:) = TF*t^2.*T(i,:);%Equation (9.2)endendendendIter=Iter+1;curve(Iter)=Best_score;%curve(Iter) = GBestF;avcurve(Iter) = sum(curve) / length(curve);disp(['第' num2str(Iter) '次迭代适应度值:' num2str(Best_score)])
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/124693040?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/124864369?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55079.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式三原则

1.1单一职责原则 C 面向对象三大特性之一的封装指的就是将单一事物抽象出来组合成一个类&#xff0c;所以我们在设计类的时候每个类中处理的是单一事物而不是某些事物的集合。 设计模式中所谓的单一职责原则&#xff0c;就是对一个类而言&#xff0c;应该仅有一个引起它变化的原…

【MYSQL8.0从入门到精通】

文章目录 MySQL 8.0一.MySQL的多表操作1.外键约束&#xff08;一对多&#xff09;2.外键约束&#xff08;多对多&#xff09; MySQL 8.0 一.MySQL的多表操作 1.外键约束&#xff08;一对多&#xff09; 方式1 在创建表的同时创建外键约束 -- 1.创建主表 create table if no…

13. Docker实战之安装MySQL

目录 1、前言 2、部署MySQL 2.1、Docker仓库查看镜像 2.2、拉取MySQL镜像 2.3、创建持久化目录 2.4、启动MySQL容器 2.5、查看宿主机上的MySQL目录 2.6、本地MySQL测试 2.7、新建MySQL用户&#xff0c;配置远程访问 2.8、本地Navicat连接测试 3、为什么数据库不适合D…

NoSQL数据库介绍+Redis部署

目录 一、NoSQL概述 1、数据的高并发读写 2、海量数据的高效率存储和访问 3、数据库的高扩展和高可用 二、NoSQL的类别 1、键值存储数据库 2、列存储数据库 3、文档型数据库 4、图形化数据库 三、分布式数据库中的CAP原理 1、传统的ACID 1&#xff09;、A--原子性 …

Spring boot 集成单元测试

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency> 2. 3.编写测试类 package com.enterprise;import com.enterpr…

Java接收前端请求体方式

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 文章目录 RequestBodyPathVariableRequestParamValidated方法参数校验方法返回值校验 RequestHeaderHttpServletRequest ## Java接收前端请求体的方式 请求体&#xf…

VR智慧校园资中控管理平台综合提升了课堂教学质量

随着越来越多高校在课堂中引进VR虚拟仿真实训系统&#xff0c;为了方便老师对全班同学进行高效率地管理&#xff0c;VR中控平台应运而生。下面为您详细介绍VR中控平台在课堂教学中的应用优势。 VR中控系统安装在教师总控端&#xff0c;融合了课件、视频、3D动画等丰富的教学资源…

顺序表链表OJ题(1)——【LeetCode】

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 前言&#xff1a; 今天我们来回顾一下顺序表与链表&#xff0c;针对这一块我们也有许多OJ题目供大家参考。当我们学习完顺序表链表后避免不了一些习题的练习&#xff0c;这样才能巩固我们学习的内容。 话不多说&#xf…

回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效…

安防监控视频平台EasyCVR视频汇聚平台和税务可视化综合管理应用方案

一、方案概述 为了确保税务执法的规范性和高效性&#xff0c;国家税务总局要求全面推行税务系统的行政执法公示制度、执法全过程记录制度和重大执法决定法制审核制度。为此&#xff0c;需要全面推行执法全过程记录制度&#xff0c;并推进信息化建设&#xff0c;实现执法全过程的…

HAproxy+keepalived高可用配置搭建

目录 一、概述 &#xff08;一&#xff09;简介 &#xff08;二&#xff09;核心功能 &#xff08;三&#xff09;关键特性 &#xff08;四&#xff09;应用场景 二、安装 1&#xff09;拓补图 2&#xff09;配置 &#xff08;一&#xff09;内核配置 &#xff08;二…

几种在JavaScript中创建对象的方式!

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 字面量方式⭐ 构造函数方式⭐ Object.create()方式⭐ 工厂函数方式⭐ ES6类方式⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门…

【硬件设计】硬件学习笔记一--元器件的介绍与选型

硬件学习笔记一--元器件的选型 一、电阻1.1 电阻的分类1.2 电阻的选型 二、电容2.1 陶瓷电容2.2 钽电容2.3 铝电解电容2.4 电容选型 三、电感3.1 定义与介绍3.2 电感的分类3.3 电感的参数 四、磁珠4.1 磁珠的介绍4.2 磁珠的参数 五、二极管5.1 定义5.2 稳压管5.3 肖特基二极管5…

BDA初级分析——可视化基础

一、可视化的作用 数据可视化——利用各种图形方式更加直观地呈现数据的过程 可视化的作用 1、更快地理解数据&#xff0c;找出数据的规律和异常 2、讲出数据背后的故事&#xff0c;辅助做出业务决策 3、给非专业人士提供数据探索的能力 数据分析问题如何通过可视化呈现&am…

Orchestrator介绍二 自身高可用性方案

目录 获得 HA 的方法 一 没有高可用性 &#xff08;No high availability&#xff09; 使用场景 架构组成 架构图 二 半高可用性&#xff08;Semi HA&#xff09; 三 基于共享数据库后端高可用&#xff08;HA via shared backend&#xff09; 四 基于Raft协议高可用 五…

Tableau可视化入门实践-2

目录 折线图1.导入excel文件数据2.建立折线图并添加标签 双轴折线图 折线图 1.导入excel文件数据 2.建立折线图并添加标签 双轴折线图 行标签拖进两个度量建立上下两个折线图 在第二个折线图纵轴&#xff0c;右键选择“双轴”

【mysql】MySQL服务无法启动 NET HELPMSG 3534

MySQL服务无法启动 NET HELPMSG 3534 错误描述寻找原因解决方法 错误描述 mysql版本&#xff1a;8.1.0 mysql安装成功之后&#xff0c;使用net start mysql来启动mysql&#xff0c;然后出现了报错 MySQL服务无法启动 NET HELPMSG 3534 寻找原因 1、在cmd中&#xff0c;进入…

JWT-Token

一、JWT 需要在 HTTP 这种无状态的机制下&#xff0c;记录下&#xff08;标识&#xff09;出来是不是连续&#xff08;逻辑上的连续&#xff09;的请求。 思路&#xff1a;如果多次请求&#xff0c;携带了相同的标识型数据&#xff0c;则认为是逻辑上连续的。这个标识&#xff…

数据结构(Java实现)LinkedList与链表(下)

** ** 结论 让一个指针从链表起始位置开始遍历链表&#xff0c;同时让一个指针从判环时相遇点的位置开始绕环运行&#xff0c;两个指针都是每次均走一步&#xff0c;最终肯定会在入口点的位置相遇。 LinkedList的模拟实现 单个节点的实现 尾插 运行结果如下&#xff1a; 也…

构建 NodeJS 影院预订微服务并使用 docker 部署(04/4)

一、说明 构建一个微服务的电影网站&#xff0c;需要Docker、NodeJS、MongoDB&#xff0c;这样的案例您见过吗&#xff1f;如果对此有兴趣&#xff0c;您就继续往下看吧。 我们前几章的快速回顾 第一篇文章介绍了微服务架构模式&#xff0c;并讨论了使用微服务的优缺点。第二篇…