DataWhale 机器学习夏令营第三期——任务二:可视化分析

DataWhale 机器学习夏令营第三期

  • 学习记录二 (2023.08.23)——可视化分析
    • 1.赛题理解
    • 2. 数据可视化分析
      • 2.1 用户维度特征分布分析
      • 2.2 时间特征分布分析

DataWhale 机器学习夏令营第三期
——用户新增预测挑战赛


学习记录二 (2023.08.23)——可视化分析

2023.08.17
已跑通baseline,换为lightgbm基线,不加任何特征线上得分0.52214
添加baseline特征,线上得分0.78176
暴力衍生特征并微调模型参数,线上得分0.86068
2023.08.23
数据分析、衍生特征:0.87488
衍生特征、模型调参:0.89817

交流分享视频:
【DataWhale“用户新增预测挑战赛”交流分享-哔哩哔哩】 https://b23.tv/zZMLtFG

1.赛题理解

在这里插入图片描述

这次比赛特征主要可以分为以下三个维度:

  • 行为维度:eidudmap
    • udmap的key处理成了类别特征
  • 时间维度:common_ts
    • 进行了时间戳特征的提取:day, hour, minute
  • 用户维度:x1~x8

2. 数据可视化分析

使用以下代码绘制前还需做一些设置,具体可以参考如下链接:
https://www.kaggle.com/code/jcaliz/ps-s03e02-a-complete-eda/notebook
该notebook内提供了丰富的可视化分析代码和思路,值得参考。

绘制代码:

def plot_cate_large(col):data_to_plot = (all_df.groupby('set')[col].value_counts(True)*100)fig, ax = plt.subplots(figsize=(10, 6))sns.barplot(data=data_to_plot.rename('Percent').reset_index(),hue='set', x=col, y='Percent', ax=ax,orient='v',hue_order=['train', 'test'])x_ticklabels = [x.get_text() for x in ax.get_xticklabels()]# Secondary axis to show mean of targetax2 = ax.twinx()scatter_data = all_df.groupby(col)['target'].mean()scatter_data.index = scatter_data.index.astype(str)ax2.plot(x_ticklabels,scatter_data.loc[x_ticklabels],linestyle='', marker='.', color=colors[4],markersize=15)ax2.set_ylim([0, 1])# Set x-axis tick labels every 5th valuex_ticks_indices = range(0, len(x_ticklabels), 5)ax.set_xticks(x_ticks_indices)ax.set_xticklabels(x_ticklabels[::5], rotation=45, ha='right')# titlesax.set_title(f'{col}')ax.set_ylabel('Percent')ax.set_xlabel(col)# remove axes to show only one at the endhandles = []labels = []if ax.get_legend() is not None:handles += ax.get_legend().legendHandleslabels += [x.get_text() for x in ax.get_legend().get_texts()]else:handles += ax.get_legend_handles_labels()[0]labels += ax.get_legend_handles_labels()[1]ax.legend().remove()plt.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, 1.08), fontsize=12)plt.tight_layout()plt.show()

2.1 用户维度特征分布分析

可视化分析说明:

  1. 研究离散变量['eid', 'x3', 'x4', 'x5‘,'x1', 'x2', 'x6','x7', 'x8'']的分布,蓝色是训练集,黄色是验证集,分布基本一致
  2. 粉色的点是训练集下每个类别每种取值的target的均值,也就是target=1的占比

在这里插入图片描述
该图主要分析类别数较少的离散变量:

  • 训练集和测试集分布比较均匀
  • x1主要集中在 x1=4x2分布比较均匀,x6基本集中在14两个值,x7分布比较均匀,可能是一个关键特征
  • x8可能是性别特征,特征重要性较低
  • udmap_key为提取出的特征,存在缺失值

在这里插入图片描述

  • x3主要集中在41下,占比太大,特征重要性很低

在这里插入图片描述

  • x4中各个类别下target的分布变化较大,可能是一个关键特征
    在这里插入图片描述
  • x5中各个类别同x4,target的分布变化较大,可能是一个关键特征,但特征数量太多在衍生特征时需要注意避免产生稀疏性
    在这里插入图片描述

2.2 时间特征分布分析

主要绘制了common_tsdayhour 的变化情况

在这里插入图片描述

  • day的值和用户增长有很大的关系,可以发现在10、14和17新用户有明显的增长
  • 老用户对应也呈现出增长趋势
    在这里插入图片描述
    绘制了从day=10day=18的新老用户变化情况
  • 新老用户的数量在每天的各个时间段呈现基本相同的趋势
  • 进一步观察原始数据可以发现,三个峰的出现是因为在该三个时间段数据量较其他时间段多
  • 可以进一步绘制出各个时间段人数占全天人数的占比图来进一步分析数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54765.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android沉浸式实现(记录)

沉浸式先看效果 直接上代码 Android manifest文件 android:theme"style/Theme.AppCompat.NoActionBar"布局文件 <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"ht…

mit s0681 lab2 Trace系统调用实现

实验一 实现一个用户级别的程序&#xff0c;功能为&#xff0c;指定系统调用后&#xff0c;跟踪程序的系统调用情况 分析实验 实验目标为实现一个程序去跟踪指定程序的系统调用。因此目标有两个 实现一个程序跟踪目标程序的系统调用 实现1&#xff0c;就需要在用户这边实…

4.18 TCP 和 UDP 可以使用同一个端口吗?

目录 TCP 和 UDP 可以同时绑定相同的端口吗&#xff1f; 多个 TCP 服务进程可以绑定同一个端口吗&#xff1f; 重启 TCP 服务进程时&#xff0c;为什么会有“Address in use”的报错信息&#xff1f; 重启 TCP 服务进程时&#xff0c;如何避免“Address in use”的报错信息…

HarmonyOS/OpenHarmony应用开发-ArkTS语言渲染控制LazyForEach数据懒加载

LazyForEach从提供的数据源中按需迭代数据&#xff0c;并在每次迭代过程中创建相应的组件。当LazyForEach在滚动容器中使用了&#xff0c;框架会根据滚动容器可视区域按需创建组件&#xff0c;当组件划出可视区域外时&#xff0c;框架会进行组件销毁回收以降低内存占用。一、接…

智驾算力芯片市场仍处于「波动」周期,Momenta曝光自研NPU

用「冷热不均」来形容当下的汽车芯片赛道&#xff0c;再合适不过了。 本周&#xff0c;英伟达公布的第二财季&#xff08;5-7月&#xff09;营收达到创纪录的135亿美元&#xff0c;大幅超出了此前市场普遍预期的略高于110亿美元&#xff0c;同比增速更是达到了101%。 其中&…

接口测试总结分享(http与rpc)

接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相互逻辑依赖关系等。 一、了解一下HTTP与RPC 1. HTTP&#xff08;H…

【python】输出高亮信息的内容

背景 日志是定位问题和数据分析的关键手段之一&#xff0c;尤其是在调试阶段&#xff0c;高效的、具有辨识度的日志可以非常快速准确的进行问题定位。shell中的echo命令自带文本格式化输出的功能&#xff0c;我们先来回顾下基本的语法&#xff0c;然后套用到python中即可。 s…

Docker安装及Docker构建简易版Hadoop生态

一、首先在VM创建一个新的虚拟机将Docker安装好 更新系统&#xff1a;首先打开终端&#xff0c;更新系统包列表。 sudo apt-get update sudo apt-get upgrade下图是更新系统包截图 安装Docker&#xff1a;使用以下命令在Linux上安装Docker。 sudo apt-get install -y docker.i…

pytestx容器化执行引擎

系统架构 前端、后端、pytest均以Docker容器运行服务&#xff0c;单独的容器化执行引擎&#xff0c;项目环境隔离&#xff0c;即用即取&#xff0c;用完即齐&#xff0c;简单&#xff0c;高效。 前端容器&#xff1a;页面交互&#xff0c;请求后端&#xff0c;展示HTML报告 后…

华为云渲染实践

// 编者按&#xff1a;云计算与网络基础设施发展为云端渲染提供了更好的发展机会&#xff0c;华为云随之长期在自研图形渲染引擎、工业领域渲染和AI加速渲染三大方向进行云渲染方面的探索与研究。本次LiveVideoStackCon 2023上海站邀请了来自华为云的陈普&#xff0c;为大家分…

【ag-grid-vue】column

网格中的每一列都使用列定义(ColDef)来定义。列根据在网格选项中指定的列定义的顺序在网格中定位。 列定义 下面的例子展示了一个定义了3列的简单网格: <template><ag-grid-vuestyle"height: 300px; width: 1000px"class"ag-theme-balham":colum…

自动化的驱动力,工控机助您实现智能生产!

“智能工厂建设如火如荼&#xff0c;部分成果已经落地&#xff0c;在大规模资金投入的市场催化下&#xff0c;海尔、海信等制造企业通过智能工厂手段推进生产效率成倍增长的新闻层出不穷。在工业4.0时代&#xff0c;“中国制造2025”战略中&#xff0c;智能工厂构建都是其中不可…

【KMP算法-代码随想录】

目录 1.什么是KMP2.什么是next数组3.什么是前缀表&#xff08;1&#xff09;前后缀含义&#xff08;2&#xff09;最长公共前后缀&#xff08;3&#xff09;前缀表的必要性 4.计算前缀表5.前缀表与next数组&#xff08;1&#xff09;使用next数组来匹配 6.构造next数组&#xf…

1.linux的常用命令

目录 一、Linux入门 二、Linux文件系统目录 三、Linux的vi和vim的使用 四、Linux的关机、重启、注销 四、Linux的用户管理 五、Linux的运行级别 六、Linux的文件目录指令 七、Linux的时间日期指令 八、Linux的压缩和解压类指令 九、Linux的搜索查找指令 ​​​​​​…

windows可视化界面管理服务器上的env文件

需求&#xff1a;在 Windows 环境中通过可视化界面编辑位于 Linux 主机上的 env 文件的情况&#xff0c;我现在环境是windows环境&#xff0c;我的env文件在linux的192.168.20.124上&#xff0c;用户是op&#xff0c;密码是op&#xff0c;文件绝对路径是/home/op/compose/env …

无涯教程-PHP - 性能优化

根据Zend小组的说明,以下插图显示了PHP 7与PHP 5.6和基于流行的基于PHP的应用程序上的HHVM 3.7。 Magento 1.9 与执行Magento事务的PHP 5.6相比&#xff0c;PHP 7的运行速度证明是其两倍。 Drupal 7 在执行Drupal事务时&#xff0c;与PHP 5.6相比&#xff0c;PHP 7的运行速度…

SQL 大小敏感问题

在SQL中&#xff0c;关键字和函数名 是不区分 大小写的 比如&#xff08;select、where、order by 、group by update 等关键字&#xff09;&#xff0c;以及函数(ABS、MOD、round、min等) window系统默认是大小写不敏感 &#xff08;ZEN文件和zen 文件 不能同时存在&#xff…

【vue3+ts项目】配置husky+配置commitlint

上一篇文章中配置了eslint校验代码工具 【vue3ts项目】配置eslint校验代码工具&#xff0c;eslintprettierstylelint 1、配置husky 每次手动执行命令才能格式化代码&#xff0c;如果有人没有格式化就提交到远程仓库&#xff0c;这个规范就起不到作用了&#xff0c;所有需要强…

Arcgis colorRmap

arcgis中colorRmap对应的名称&#xff1a; 信息来源&#xff1a;https://developers.arcgis.com/documentation/common-data-types/raster-function-objects.htm 在arcpy中使用方法&#xff1a; import arcpy cr arcpy.mp.ColorRamp("Yellow to Red")python中 ma…

wqs二分

前提&#xff1a;答案满足凸性 题目类似为 n n n 个里面选 m m m 个求某种代价&#xff0c;暴力二维dp复杂度大&#xff0c;但容易计算不限制选的次数。 由于不限制选的次数&#xff0c;所以给选一个东西给一个代价 v v v&#xff0c;然后判断最后选了多少个&#xff0c;再…