性能优化之分库分表

1、什么是分库分表

1.1、分表

将同一个库中的一张表(比如SPU表)按某种方式(垂直拆分、水平拆分)拆分成SPU1、SPU2、SPU3、SPU4…等若干张表,如下图所示:
在这里插入图片描述

1.2、分库

在表数据不变的情况下,对数据库进行拆分,即将一个库中的若干张表按某种方式拆分出来,放到不同的数据中,如下图所示:
在这里插入图片描述

1.3、分库+分表

数据库的数量和表的数量都有变化,例如将一个数据库中的一张表(比如SPU表)拆分成SPU1、SPU2、SPU3、SPU4…等若干张表,并放到不同的数据里面,如下图所示:
在这里插入图片描述

2、拆分方式

在这里插入图片描述

2.1、水平拆分

水平拆分指的是在整个表数据结构不发生变化的前提下,我们将一张表的数据拆分成多张表,如下图所示:
在这里插入图片描述
这样拆分完以后,单张表的数据量就降下来了,读写性能自然就上去了。

2.2、垂直拆分

垂直拆分指将本来放在一张表中的字段,按业务需求拆分开放到多张表中,如下图所示:
在这里插入图片描述
这样拆分完后,就将需要经常查询的数据单独放到一张表中了,性能也就提上去了。

2、何时进行分库分表?

当系统性能出现瓶颈,我们通过代码优化、加缓存、JVM性能调优、限流、搭建集群等常用的技术手段依然无法很好的解决问题时,就可以考虑采用分库分表来提高系统的性能。常见需要进行分表分表的场景有以下几点:

2.1、单表出现性能瓶颈

单表数据量较大,导致读写性能较慢。

2.2、单库出现性能瓶颈

  1. CPU压力过大(busy、load过高),导致读写性能较慢。
  2. 内存不足(缓存池命中率较低、磁盘读写IOPS过高),导致读写性能较慢。
  3. 磁盘空间不足,导致无法正常写入数据。
  4. 网络带宽不足,导致读写性能较慢。

3、如何选择分库、分表或者分库+分表

3.1、只分表

  • 单表数据量较大,单表读写性能出现瓶颈。
  • 经过评估单库的容量和性能可以支撑未来几年的数据量增长。

3.2、只分库

  • 数据库(读)写压力较大,数据库出现存储性能瓶颈。

3.3、分库分表

  • 单表数据量较大,单表读写性能出现瓶颈。
  • 数据库(读)写压力较大,数据库出现存储性能瓶颈。

4、分库分表带来的问题

4.1、分布式唯一ID

分库分表后,一张表被拆成了多张表,数据库的自增ID无法保证数据的唯一性了,因此需要映入一种方案来保证数据ID的唯一性。成熟的解决方案有以下几个:

4.1.1、UUID

优点:本地生成,性能高。

缺点:

  • 更占用存储空间,一般为长度36的字符串。
  • 不适合作为MySQL主键:无序性会导致磁盘随机IO、叶分裂等问题;普通索引需要存储主键值,导致B+树“变高”,IO次数变多。
  • 基于MAC地址的送算法可能会导致MAC地址泄漏。

4.1.2、雪花算法

在这里插入图片描述

  • 41bit时间戳:可用69年
  • 10bit工作机器:可部署1024台服务器
  • 12bit序列号:每毫秒可生成4096个ID,每秒也就是409万。

4.1.3、号段模式

在这里插入图片描述

4.2、分布式事务

4.2.1、2PC

2PC 即两阶段提交协议,是将整个事务流程分为两个阶段,准备阶段(Prepare phase)、提交阶段(commit phase),2 是指两个阶段,P 是指准备阶段,C 是指提交阶段。
在这里插入图片描述

4.2.2、TCC

TCC(Try-Confirm-Cancel)是一种事务模型,其概念源自于Pat Helland的论文《Life beyond Distributed Transactions:an Apostate’s Opinion》。

TCC提出了一种基于业务层面的事务定义方式,通过由业务自身控制锁粒度,解决了复杂业务中跨表跨库等大颗粒度资源锁定的问题。

TCC将事务过程分为Try(尝试)、Confirm(确认)和Cancel(取消)三个阶段,每个阶段由业务代码控制,避免了长事务的问题,从而提高了性能。

TCC 的具体流程如下图所示:

在这里插入图片描述

4.2.3、常见的保证最终一致的处理方法

  • 回滚
  • 重试
  • 监控
  • 告警
  • 幂等
  • 对账
  • 人工补偿

4.3、跨库JOIN/分页查询

4.3.1、合适的分表字段(sharding key)

合理选择,避免大多数跨库查询
在这里插入图片描述

4.3.2、搜索引擎支持:ES

数据冗余到ES,使用ES支持复杂查询。
核心流程:

  • 使用ES查询出关键字段,例如:门店id和商品id。
  • 再使用关键字段去查询完整数据。
    注意点:
  • ES只需要存储需要搜索的字段。

4.3.3、分开查询,内存中聚合

先查询出A表数据,然后根据A表的结果查询B表。
注意点:

  • 查询出来的数据量
  • 内存占用情况

4.3.4、冗余字段

A表查询需要B表的field1字段,则将B表的field1存储一份到A表上。
适用场景:只需要少量字段,则可以直接冗余。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“R语言+遥感“水环境综合评价方法

详情点击链接:"R语言遥感"水环境综合评价方法 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址 &…

如何基于亚马逊云科技打造高性能的 SQL 向量数据库 MyScale

MyScale 是一款完全托管于亚马逊云科技、支持 SQL 的高效向量数据库。MyScale 的优势在于,它在提供与专用向量数据库相匹敌甚至优于的性能的同时,还支持完整的 SQL 语法。在这篇文章中,我们将阐述 MyScale 是如何借助亚马逊云科技的基础设施&…

pnpm无法加载文件 (解决方法 )

现在要运行一个TS的项目,我的电脑上没有安装pnpm,导致我的vscode一直报错无法加载。 pnpm安装: npm install -g pnpm pnpm : 无法加载文件 pnpm : 无法加载文件 C:\Users\HP\AppData\Roaming\npm\pnpm.ps1,因为在此系统上禁止运…

英语略读三

课文的客观,或者逻辑推理 同增通减 比错 对比选项,找一个明显的区别 防并列,文章再说主语在干嘛干嘛的,但是与答案的角度不一样,是并列的关系 在对比选项,不是证明正确的 具体问题具体分析,but…

【30天熟悉Go语言】10 Go异常处理机制

作者:秃秃爱健身,多平台博客专家,某大厂后端开发,个人IP起于源码分析文章 😋。 源码系列专栏:Spring MVC源码系列、Spring Boot源码系列、SpringCloud源码系列(含:Ribbon、Feign&…

[Linux]文件IO

文章目录 1. 文件描述符1.1 虚拟地址空间1.1.1 存在的意义1.1.2 分区 1.2 文件描述符1.2.1 文件描述符1.2.2 文件描述符表 2. Linux系统文件IO2.1 open/close2.1.1 函数原型2.1.2 close函数原型2.1.3 打开已存在文件2.1.4 创建新文件2.1.5 文件状态判断 2.2 read/write2.2.1 re…

Spring Boot(Vue3+ElementPlus+Axios+MyBatisPlus+Spring Boot 前后端分离)【四】

😀前言 本篇博文是关于Spring Boot(Vue3ElementPlusAxiosMyBatisPlusSpring Boot 前后端分离)【四】,希望你能够喜欢 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章…

VMware虚拟机连不上网络

固定ip地址 进入网络配置文件 cd /etc/sysconfig/network-scripts 打开文件 vi ifcfg-ens33 编辑 BOOTPROTO设置为static,有3个值(decp、none、static) BOOTPROTO"static" 打开网络 ONBOOT"yes" 固定ip IPADDR1…

为什么需要websocket?

一、为什么需要websocket? 前端和后端的交互模式最常见的就是前端发数据请求,从后端拿到数据后展示到页面中。如果前端不做操作,后端不能主动向前端推送数据,这也是http协议的缺陷。 因此,一种新的通信协议应运而生---…

【滑动窗口】leetcode1004:最大连续1的个数

一.题目描述 最大连续1的个数 这道题要我们找最大连续1的个数,看到“连续”二字,我们要想到滑动窗口的方法。滑动窗口的研究对象是一个连续的区间,这个区间需要满足某个条件。那么本题要找的是怎样的区间呢?是一个通过翻转0后得到…

抖音web主页视频爬虫

需要抖音主页视频爬虫源码的发私信,小偿即可获得长期有效的采集程序。 比构造 s_v_web_id 验证滑块的方法更快,更稳定。

JVM理论知识

一、JVM内存结构 java的内存模型主要分为5个部分,分别是:JVM堆、JVM栈、本地栈、方法区还有程序计数器,他们的用途分别是: JVM堆:新建的对象都会放在这里,他是JVM中所占内存最大的区域。他又分为新生区还…

2022年09月 C/C++(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题&#xff1a;最长上升子序列 一个数的序列bi&#xff0c;当b1 < b2 < … < bS的时候&#xff0c;我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN)&#xff0c;我们可以得到一些上升的子序列(ai1, ai2, …, aiK)&#xff0c;这里1 < i1 < i2 &…

【中危】Apache Ivy<2.5.2 存在XXE漏洞 (CVE-2022-46751)

漏洞描述 Apache Ivy 是一个管理基于 ANT 项目依赖关系的开源工具&#xff0c;文档类型定义(DTD)是一种文档类型定义语言,它用于定义XML文档中所包含的元素以及元素之间的关系。 Apache Ivy 2.5.2之前版本中&#xff0c;当解析自身配置、Ivy 文件或 Apache Maven 的 POM 文件…

设计模式--适配器模式(Adapter Pattern)

一、什么是适配器模式&#xff08;Adapter Pattern&#xff09; 适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许将一个类的接口转换成客户端所期望的另一个接口。适配器模式主要用于解决不兼容接口之间的问题&#xff0c;使得原本…

leetcode:338. 比特位计数(python3解法)

难度&#xff1a;简单 给你一个整数 n &#xff0c;对于 0 < i < n 中的每个 i &#xff0c;计算其二进制表示中 1 的个数 &#xff0c;返回一个长度为 n 1 的数组 ans 作为答案。 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;[0,1,1] 解释&#xff1a; 0…

RedisDesktopManager(redis客户端,可输入用户名密码)

RedisDesktopManager&#xff08;redis客户端&#xff0c;可输入用户名密码&#xff09; Redis桌面管理器&#xff08;又名RDM&#xff09; - 是一个用于Windows&#xff0c;Linux和MacOS的快速开源Redis数据库管理应用程序。可以使用url连接或账号密码。 redis设置账号密码后…

[论文阅读笔记26]Tracking Everything Everywhere All at Once

论文地址: 论文 代码地址: 代码 这是一篇效果极好的像素级跟踪的文章, 发表在ICCV2023, 可以非常好的应对遮挡等情形, 其根本的方法在于将2D点投影到一个伪3D(quasi-3D)空间, 然后再映射回去, 就可以在其他帧中得到稳定跟踪. 这篇文章的方法不是很好理解, 代码也刚开源, 做一…

嵌入式设备应用开发(发现需求和提升价值)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 很多做技术的同学,都会陷入到技术的窠臼之中。对于如何做具体的产品、实现具体的技术,他们可能很感兴趣。但是做出来的东西做什么用,或者说是有没有竞争力,事实上他们不是很关心…

身为一个后端程序员如何快速制作后端管理系统的UI

前言 我的专业领域在后端开发上&#xff0c;前端我仅仅是熟悉&#xff0c;但是要从头开发一个前端UI界面有点难为人了。那么身为一个后端程序员我们怎么来开发后端管理系统UI界面呢&#xff1f; 方案1&#xff1a;现成的模版来套&#xff08;有一定的前端基础&#xff0c;只是…