Prerequisites:
先决条件:
numpy.matmul( ) matrix multiplication
numpy.matmul()矩阵乘法
Identity matrix
身份矩阵
In linear algebra, the identity matrix, of size n is the n × n square matrix with ones on the main diagonal and zeros elsewhere. It is denoted by I. Also known as the unit matrix because its determinant value is 1 irrespective of size. This is the key feature of an Identity matrix and it plays an important role in Linear Algebra.
在线性代数中,大小为n的单位矩阵是n×n方阵,主对角线上为1,其他地方为零。 用I表示。 也称为单位矩阵,因为其行列式值为1,与大小无关。 这是恒等矩阵的关键特征,在线性代数中起着重要的作用。
The identity matrix has the property that, Multiplying k identity matrices gives an identity matrix (Ik = I).
单位矩阵具有以下性质:将k个单位矩阵相乘得到一个单位矩阵( I k = I )。
身份矩阵属性的Python代码( IK = I) (Python code for identity matrix property (Ik = I))
# Linear Algebra Learning Sequence
# Identity Matrix Property (I^k = I)
import numpy as np
# identity Matrix
I = np.eye(4)
print("\n---I(4x4)---\n", I)
k = 14
Ik = I
for i in range(14):
Ik = I*Ik
print('\n\n--- I^k ----\n', Ik)
Output:
输出:
---I(4x4)---
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
--- I^k ----
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
翻译自: https://www.includehelp.com/python/identity-matrix-property-i-k-i.aspx