分布式锁的 3 种实现方案!

前言

大家好,我是磊哥。今天跟大家探讨一下分布式锁的设计与实现。希望对大家有帮助,如果有不正确的地方,欢迎指出,一起学习,一起进步哈~

  • 分布式锁概述

  • 数据库分布式锁

  • Redis分布式锁

  • Zookeeper分布式锁

  • 三种分布式锁对比

1. 分布式锁概述

我们的系统都是分布式部署的,日常开发中,秒杀下单、抢购商品等等业务场景,为了防⽌库存超卖,都需要用到分布式锁

分布式锁其实就是,控制分布式系统不同进程共同访问共享资源的一种锁的实现。如果不同的系统或同一个系统的不同主机之间共享了某个临界资源,往往需要互斥来防止彼此干扰,以保证一致性。

业界流行的分布式锁实现,一般有这3种方式:

  • 基于数据库实现的分布式锁

  • 基于Redis实现的分布式锁

  • 基于Zookeeper实现的分布式锁

2. 基于数据库的分布式锁

2.1 数据库悲观锁实现的分布式锁

可以使用select ... for update 来实现分布式锁。我们自己的项目,分布式定时任务,就使用类似的实现方案,我给大家来展示个简单版的哈

表结构如下:

CREATE TABLE `t_resource_lock` (`key_resource` varchar(45) COLLATE utf8_bin NOT NULL DEFAULT '资源主键',`status` char(1) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT 'S,F,P',`lock_flag` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '1是已经锁 0是未锁',`begin_time` datetime DEFAULT NULL COMMENT '开始时间',`end_time` datetime DEFAULT NULL COMMENT '结束时间',`client_ip` varchar(45) COLLATE utf8_bin NOT NULL DEFAULT '抢到锁的IP',`time` int(10) unsigned NOT NULL DEFAULT '60' COMMENT '方法生命周期内只允许一个结点获取一次锁,单位:分钟',PRIMARY KEY (`key_resource`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin

加锁lock方法的伪代码如下:

@Transcational //一定要加事务
public boolean lock(String keyResource,int time){resourceLock = 'select * from t_resource_lock where key_resource ='#{keySource}' for update';try{if(resourceLock==null){//插入锁的数据resourceLock = new ResourceLock();resourceLock.setTime(time);resourceLock.setLockFlag(1);  //上锁resourceLock.setStatus(P); //处理中resourceLock.setBeginTime(new Date());int count = "insert into resourceLock"; if(count==1){//获取锁成功return true;}return false;}}catch(Exception x){return false;}//没上锁并且锁已经超时,即可以获取锁成功if(resourceLock.getLockFlag=='0'&&'S'.equals(resourceLock.getstatus)&& new Date()>=resourceLock.addDateTime(resourceLock.getBeginTime(,time)){resourceLock.setLockFlag(1);  //上锁resourceLock.setStatus(P); //处理中resourceLock.setBeginTime(new Date());//update resourceLock;return true;}else if(new Date()>=resourceLock.addDateTime(resourceLock.getBeginTime(,time)){//超时未正常执行结束,获取锁失败return false;}else{return false;} 
}

解锁unlock方法的伪代码如下:

public void unlock(String v,status){resourceLock.setLockFlag(0);  //解锁resourceLock.setStatus(status); S:表示成功,F表示失败//update resourceLock;return ;
}

整体流程:

try{
if(lock(keyResource,time)){ //加锁status = process();//你的业务逻辑处理。}
} finally{unlock(keyResource,status); //释放锁
}

其实这个悲观锁实现的分布式锁,整体的流程还是比较清晰的。就是先select ... for update 锁住主键key_resource那个记录,如果为空,则可以插入一条记录,如果已有记录判断下状态和时间是否已经超时。这里需要注意一下哈,必须要加事务哈。

2.2 数据库乐观锁实现的分布式锁

除了悲观锁,还可以用乐观锁实现分布式锁。乐观锁,顾名思义,就是很乐观,每次更新操作,都觉得不会存在并发冲突,只有更新失败后,才重试。它是基于CAS思想实现的。我以前的公司,扣减余额就是用这种方案。

搞个version字段,每次更新修改,都会自增加一,然后去更新余额时,把查出来的那个版本号,带上条件去更新,如果是上次那个版本号,就更新,如果不是,表示别人并发修改过了,就继续重试。

大概流程如下:

  1. 查询版本号和余额

select version,balance from account where user_id ='666';

假设查到版本号是oldVersion=1.

  1. 逻辑处理,判断余额

if(balance<扣减金额){return;
}left_balance = balance - 扣减金额;
  1. 进行扣减余额

update account set balance = #{left_balance} ,version = version+1 where version 
= #{oldVersion} and balance>= #{left_balance} and user_id ='666';

大家可以看下这个流程图哈:

555d6cfe320e15513298a908302c7383.png

这种方式适合并发不高的场景,一般需要设置一下重试的次数

3.基于Redis实现的分布式锁

Redis分布式锁一般有以下这几种实现方式:

  • setnx + expire

  • setnx + value值是过期时间

  • set的扩展命令(set ex px nx)

  • set ex px nx + 校验唯一随机值,再删除

  • Redisson

  • Redisson + RedLock

3.1 setnx + expire

聊到Redis分布式锁,很多小伙伴反手就是setnx + expire,如下:

if(jedis.setnx(key,lock_value) == 1){ //setnx加锁expire(key,100); //设置过期时间try {do something  //业务处理}catch(){}finally {jedis.del(key); //释放锁}
}

这段代码是可以加锁成功,但是你有没有发现问题,加锁操作和设置超时时间是分开的。假设在执行完setnx加锁后,正要执行expire设置过期时间时,进程crash掉或者要重启维护了,那这个锁就长生不老了,别的线程永远获取不到锁啦,所以分布式锁不能这么实现

3.2 setnx + value值是过期时间

long expires = System.currentTimeMillis() + expireTime; //系统时间+设置的过期时间
String expiresStr = String.valueOf(expires);// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(key, expiresStr) == 1) {return true;
} 
// 如果锁已经存在,获取锁的过期时间
String currentValueStr = jedis.get(key);// 如果获取到的过期时间,小于系统当前时间,表示已经过期
if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {// 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)String oldValueStr = jedis.getSet(key, expiresStr);if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {// 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁return true;}
}//其他情况,均返回加锁失败
return false;
}

日常开发中,有些小伙伴就是这么实现分布式锁的,但是会有这些缺点

  • 过期时间是客户端自己生成的,分布式环境下,每个客户端的时间必须同步。

  • 没有保存持有者的唯一标识,可能被别的客户端释放/解锁

  • 锁过期的时候,并发多个客户端同时请求过来,都执行了jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖。

3.3  set的扩展命令(set ex px nx)

这个命令的几个参数分别表示什么意思呢?跟大家复习一下:

SET key value [EX seconds] [PX milliseconds] [NX|XX]
  • EX second :设置键的过期时间为second秒。

  • PX millisecond :设置键的过期时间为millisecond毫秒。

  • NX :只在键不存在时,才对键进行设置操作。

  • XX :只在键已经存在时,才对键进行设置操作。

if(jedis.set(key, lock_value, "NX", "EX", 100s) == 1){ //加锁try {do something  //业务处理}catch(){}finally {jedis.del(key); //释放锁}
}

这个方案可能存在这样的问题:

  • 锁过期释放了,业务还没执行完。

  • 锁被别的线程误删。

有些伙伴可能会有个疑问,就是锁为什么会被别的线程误删呢?假设并发多线程场景下,线程A获得了锁,但是它没释放锁的话,线程B是获取不到锁的,所以按道理它是执行不到加锁下面的代码滴,怎么会导致锁被别的线程误删呢?

假设线程A和B,都想用key加锁,最后A抢到锁加锁成功,但是由于执行业务逻辑的耗时很长,超过了设置的超时时间100s。这时候,Redis就自动释放了key锁。这时候线程B就可以加锁成功了,接下啦,它也执行业务逻辑处理。假设碰巧这时候,A执行完自己的业务逻辑,它就去释放锁,但是它就把B的锁给释放了。

3.4 set ex px nx + 校验唯一随机值,再删除

为了解决锁被别的线程误删问题。可以在set ex px nx的基础上,加上个校验的唯一随机值,如下:

if(jedis.set(key, uni_request_id, "NX", "EX", 100s) == 1){ //加锁try {do something  //业务处理}catch(){}finally {//判断是不是当前线程加的锁,是才释放if (uni_request_id.equals(jedis.get(key))) {jedis.del(key); //释放锁}}
}

在这里,判断当前线程加的锁和释放锁不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁。

一般可以用lua脚本来包一下。lua脚本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) 
elsereturn 0
end;

这种方式比较不错了,一般情况下,已经可以使用这种实现方式。但是还是存在:锁过期释放了,业务还没执行完的问题

3.5 Redisson

对于可能存在锁过期释放,业务没执行完的问题。我们可以稍微把锁过期时间设置长一些,大于正常业务处理时间就好啦。如果你觉得不是很稳,还可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。可以看下Redisson底层原理图:

6abcc2752181a0b77f8fb444731d91c4.png

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用watch dog解决了锁过期释放,业务没执行完问题

3.6 Redisson + RedLock

前面六种方案都只是基于Redis单机版的分布式锁讨论,还不是很完美。因为Redis一般都是集群部署的:

dbe7a47ba409ae732ec5d9238379a6e3.png

如果线程一在Redismaster节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以顺理成章获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者antirez提出一种高级的分布式锁算法:Redlock。它的核心思想是这样的:

部署多个Redis master,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。

d87509d9e229f731ea6be2e9bc831594.pngRedLock的实现步骤:

  1. 获取当前时间,以毫秒为单位。

  2. 按顺序向5个master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。

  3. 客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms)

  4. 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。

  5. 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁

  • 根据设置的超时时间来判断,是不是要跳过该master节点。

  • 如果大于等于3个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。

  • 如果获取锁失败,解锁!

Redisson实现了redLock版本的锁,有兴趣的小伙伴,可以去了解一下哈~

4. Zookeeper分布式锁

在学习Zookeeper分布式锁之前,我们复习一下Zookeeper的节点哈。

Zookeeper的节点Znode有四种类型:

  • 持久节点:默认的节点类型。创建节点的客户端与zookeeper断开连接后,该节点依旧存在。

  • 持久节点顺序节点:所谓顺序节点,就是在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号,持久节点顺序节点就是有顺序的持久节点。

  • 临时节点:和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除。

  • 临时顺序节点:有顺序的临时节点。

Zookeeper分布式锁实现应用了临时顺序节点。这里不贴代码啦,来讲下zk分布式锁的实现原理吧。

4.1 zk获取锁过程

当第一个客户端请求过来时,Zookeeper客户端会创建一个持久节点locks。如果它(Client1)想获得锁,需要在locks节点下创建一个顺序节点lock1.如图

e3d0777d4d3ffa031fb5e555911e5791.png

接着,客户端Client1会查找locks下面的所有临时顺序子节点,判断自己的节点lock1是不是排序最小的那一个,如果是,则成功获得锁。

43039bf1c66e8a93e4c5b4fe4e8e29fb.png

这时候如果又来一个客户端client2前来尝试获得锁,它会在locks下再创建一个临时节点lock2

1c99b41bbc07ae8b74f30dbae52704ce.png

客户端client2一样也会查找locks下面的所有临时顺序子节点,判断自己的节点lock2是不是最小的,此时,发现lock1才是最小的,于是获取锁失败。获取锁失败,它是不会甘心的,client2向它排序靠前的节点lock1注册Watcher事件,用来监听lock1是否存在,也就是说client2抢锁失败进入等待状态。

74de33842a9de56fe500d3c1c7cbae44.png

此时,如果再来一个客户端Client3来尝试获取锁,它会在locks下再创建一个临时节点lock3

22f75195901b513645303a39fb367685.png同样的,client3一样也会查找locks下面的所有临时顺序子节点,判断自己的节点lock3是不是最小的,发现自己不是最小的,就获取锁失败。它也是不会甘心的,它会向在它前面的节点lock2注册Watcher事件,以监听lock2节点是否存在。

3c0d5ea44c1d21d07ed7db8917f0fc6e.png

4.2 释放锁

我们再来看看释放锁的流程,Zookeeper的客户端业务完成或者发生故障,都会删除临时节点,释放锁。如果是任务完成,Client1会显式调用删除lock1的指令

4cd22e052483671a1d0f7d2a918528aa.png

如果是客户端故障了,根据临时节点得特性,lock1是会自动删除的

65501295ede8d3ffc2e29a100d9a721c.png

lock1节点被删除后,Client2可开心了,因为它一直监听着lock1。lock1节点删除,Client2立刻收到通知,也会查找locks下面的所有临时顺序子节点,发下lock2是最小,就获得锁。

bf7da7509bb1107cea5aeec2604216af.png

同理,Client2获得锁之后,Client3也对它虎视眈眈,啊哈哈~

  • Zookeeper设计定位就是分布式协调,简单易用。如果获取不到锁,只需添加一个监听器即可,很适合做分布式锁。

  • Zookeeper作为分布式锁也缺点:如果有很多的客户端频繁的申请加锁、释放锁,对于Zookeeper集群的压力会比较大。

5. 三种分布式锁对比

5.1 数据库分布式锁实现

优点:

  • 简单,使用方便,不需要引入Redis、zookeeper等中间件。

缺点:

  • 不适合高并发的场景

  • db操作性能较差;

5.2 Redis分布式锁实现

优点:

  • 性能好,适合高并发场景

  • 较轻量级

  • 有较好的框架支持,如Redisson

缺点:

  • 过期时间不好控制

  • 需要考虑锁被别的线程误删场景

5.3 Zookeeper分布式锁实现

缺点:

  • 性能不如redis实现的分布式锁

  • 比较重的分布式锁。

优点:

  • 有较好的性能和可靠性

  • 有封装较好的框架,如Curator

5.4 对比汇总

  • 从性能角度(从高到低)Redis > Zookeeper >= 数据库;

  • 从理解的难易程度角度(从低到高)数据库 > Redis > Zookeeper;

  • 从实现的复杂性角度(从低到高)Zookeeper > Redis > 数据库;

  • 从可靠性角度(从高到低)Zookeeper > Redis > 数据库。

最后(求关注,别白嫖我)

如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、转发、在看,您的支持是我坚持写作最大的动力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/544228.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java学习笔记16--异常

java学习笔记16--异常 异常 异常时导致程序中断运行的一种指令流&#xff0c;如果不对异常进行正确的处理&#xff0c;则可能导致程序的中断执行&#xff0c;造成不必要的损失&#xff0c; 所以在程序的设计中必须要考虑各种异常的发生&#xff0c;并正确的做好相应的处理&am…

线程安全问题的 3 种解决方案!

作者 | 磊哥来源 | Java面试真题解析&#xff08;ID&#xff1a;aimianshi666&#xff09;转载请联系授权&#xff08;微信ID&#xff1a;GG_Stone&#xff09;线程安全是指某个方法或某段代码&#xff0c;在多线程中能够正确的执行&#xff0c;不会出现数据不一致或数据污染的…

一文读懂MySQL查询语句的执行过程

需要从数据库检索某些符合要求的数据&#xff0c;我们很容易写出 Select A B C FROM T WHERE ID XX 这样的SQL&#xff0c;那么当我们向数据库发送这样一个请求时&#xff0c;数据库到底做了什么&#xff1f;我们今天以MYSQL为例&#xff0c;揭示一下MySQL数据库的查询过程&a…

synchronized底层是如何实现的?

作者 | 磊哥来源 | Java面试真题解析&#xff08;ID&#xff1a;aimianshi666&#xff09;转载请联系授权&#xff08;微信ID&#xff1a;GG_Stone&#xff09;想了解 synchronized 是如何运行的&#xff1f;就要先搞清楚 synchronized 是如何实现&#xff1f;synchronized 同步…

单例模式 4 种经典实现方法

0.前言 如果你去问一个写过几年代码的程序员用过哪些设计模式&#xff0c;我打赌&#xff0c;90%以上的回答里面会带【单例模式】。甚至有的面试官会直接问&#xff1a;说一下你用过哪些设计模式&#xff0c;单例就不用说了。你看&#xff0c;连面试官都听烦了&#xff0c;火爆…

CSRF简单介绍及利用方法-跨站请求伪造

0x00 简要介绍 CSRF&#xff08;Cross-site request forgery&#xff09;跨站请求伪造&#xff0c;由于目标站无token/referer限制&#xff0c;导致攻击者可以用户的身份完成操作达到各种目的。根据HTTP请求方式&#xff0c;CSRF利用方式可分为两种。 0x01 GET类型的CSRF 这种类…

虾皮二面:什么是零拷贝?如何实现零拷贝?

前言 零拷贝是老生常谈的问题啦&#xff0c;大厂非常喜欢问。比如Kafka为什么快&#xff0c;RocketMQ为什么快等&#xff0c;都涉及到零拷贝知识点。最近技术讨论群几个伙伴分享了阿里、虾皮的面试真题&#xff0c;也都涉及到零拷贝。因此本文将跟大家一起来学习零拷贝原理。1.…

各大框架都在使用的Unsafe类,到底有多神奇?

前言 几乎每个使用 Java开发的工具、软件基础设施、高性能开发库都在底层使用了sun.misc.Unsafe&#xff0c;比如Netty、Cassandra、Hadoop、Kafka等。Unsafe类在提升Java运行效率&#xff0c;增强Java语言底层操作能力方面起了很大的作用。但Unsafe类在sun.misc包下&#xff0…

Codis 分布式缓存部署

为什么80%的码农都做不了架构师&#xff1f;>>> 环境介绍: 1:机器三台 ,IP/hostname 如下, hostname的设置很重要zookeeper / codis的通信都会用到,所以要配置好三台机器的hosts文件. 10.221.8.220 机器的hostname为 Redis1 10.221.8.221 机器的hostname为 Redis…

怎么解决MySQL死锁问题的?

咱们使用 MySQL 大概率上都会遇到死锁问题&#xff0c;这实在是个令人非常头痛的问题。本文将会对死锁进行相应介绍&#xff0c;对常见的死锁案例进行相关分析与探讨&#xff0c;以及如何去尽可能避免死锁给出一些建议。话不多说&#xff0c;开整&#xff01;什么是死锁死锁是并…

Apache cxf JaxRs基本应用

2019独角兽企业重金招聘Python工程师标准>>> 在前一篇中&#xff0c;我们完成了《Apache cxf JaxWs基本应用》 的编写&#xff0c;我们现在实现一个Restful风格的Cxf 。 一、我们首先依旧是基于Maven project配置pom.xml的依赖 [html] view plaincopyprint? <pr…

白嫖1年阿里云,反手就搭一个Java环境

作者 | 磊哥来源 | Java中文社群&#xff08;ID&#xff1a;javacn666&#xff09;转载请联系授权&#xff08;微信ID&#xff1a;GG_Stone&#xff09;早上收到阿里云小姐姐的消息&#xff0c;阿里云有搞事情了&#xff0c;这次是送一年的阿里云 ECS 服务器。有便宜不占王八蛋…

synchronized和ReentrantLock的5个区别!

作者 | 磊哥来源 | Java面试真题解析&#xff08;ID&#xff1a;aimianshi666&#xff09;转载请联系授权&#xff08;微信ID&#xff1a;GG_Stone&#xff09;在 Java 中&#xff0c;常用的锁有两种&#xff1a;synchronized&#xff08;内置锁&#xff09;和 ReentrantLock&a…

《小强升职记》读后感和思维导图

语言幽默轻松&#xff0c;寓教于乐&#xff0c;看完之后有挽起袖子大干一场的冲动&#xff0c;但是诚如书中所言&#xff0c;“不做收藏家&#xff0c;要做建筑工”&#xff0c;实践和坚持才能有所收获。第一次画思维导图(′▽〃)Xmind格式文件转载于:https://www.cnblogs.com/…

oppo后端16连问

前言 大家好&#xff0c;我是磊哥。最近有位读者去面试了oppo&#xff0c;给大家整理了面试真题的答案。希望对大家有帮助哈&#xff0c;一起学习&#xff0c;一起进步。聊聊你印象最深刻的项目&#xff0c;或者做了什么优化。你项目提到分布式锁&#xff0c;你们是怎么使用分布…

实战!阿里神器 Seata 实现 TCC 模式解决分布式事务

今天这篇文章介绍一下Seata如何实现TCC事务模式&#xff0c;文章目录如下&#xff1a;目录什么是TCC模式&#xff1f;TCC&#xff08;Try Confirm Cancel&#xff09;方案是一种应用层面侵入业务的两阶段提交。是目前最火的一种柔性事务方案&#xff0c;其核心思想是&#xff1…

Spring Boot 中实现跨域的 5 种方式,你一定要知道!

一、为什么会出现跨域问题出于浏览器的同源策略限制。同源策略&#xff08;Sameoriginpolicy&#xff09;是一种约定&#xff0c;它是浏览器最核心也最基本的安全功能&#xff0c;如果缺少了同源策略&#xff0c;则浏览器的正常功能可能都会受到影响。可以说Web是构建在同源策略…

术中导航_密码术中的计数器(CTR)模式

术中导航The Counter Mode or CTR is a simple counter based block cipher implementation in cryptography. Each or every time a counter initiated value is encrypted and given as input to XOR with plaintext or original text which results in ciphertext block. Th…

Android社交类APP动态详情代码实现通用模板

&#xfeff;&#xfeff;Android社交类APP动态详情代码实现通用模板 Android平台上一些比较流行的社交类APP比如微信、陌陌等&#xff0c;都有动态详情页&#xff0c;在该页面&#xff0c;用户发表的动态详情&#xff0c;好友可以发起评论、点赞等等。这种设计在微信和陌陌上大…

聊聊并发编程的12种业务场景

前言并发编程是一项非常重要的技术&#xff0c;无论在面试&#xff0c;还是工作中出现的频率非常高。并发编程说白了就是多线程编程&#xff0c;但多线程一定比单线程效率更高&#xff1f;答&#xff1a;不一定&#xff0c;要看具体业务场景。毕竟如果使用了多线程&#xff0c;…