信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2序列的傅立叶变换(离散时间傅立叶变换)
一、序列傅立叶变换:
正变换:DTFT[x(n)]=(2.2.1)
反变换:DTFT-1
式(2.2.1)级数收敛条件为
||= (2.2.2)
上式称为x(n)绝对可和。这也是DTFT存在的充分必要条件。当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:
1、DTFT的周期性
,是频率w的周期函数,周期为2p。
∵ = 。
问题1:设x(n)=RN(n),求x(n)的DTFT。
==
==
设N为4,画出幅度与相位曲线。
2、线性
设=DTFT[x1(n)],=DTFT[x2(n)],
则:DTFT[a x1(n)+b x2(n)]
= = a+b
3、序列的移位和频移
设 = DTFT[x(n)],
则:DTFT[x(n-n0)] =
=
DTFT[x(n)] =
= =
4、DTFT的对称性
共轭对称序列的定义:设序列满足下式
则称为共轭对称序列。
共轭对称序列的性质:
共轭对称序列的实部是偶函数,虚部是奇函数
证明:=+j(实部加虚部)
∵
∴+j=-j
∴=(偶函数)
∴=-(奇函数)
一般情况下,共轭对称序列用表示:
共轭反对称序列的定义:设序列满足下式
则称为共轭反对称序列。
共轭反对称序列的性质:
共轭反对称序列的实部是奇函数,虚部是偶函数
证明:=+j(实部加虚部)
∵
∴+j=+j
∴=(奇函数)
∴=(偶函数)
一般情况下,用来表示
一个序列可用共轭对称序列与共轭反对称序列之和表示。即:
x(n)= + (2.2.16)
问题1: =?
=+
=-
∴= - (2.2.17)
=(+)
=(-)
对于频域函数,也可分解成共轭对称分量和共轭反对称分量之和:
式中,是共轭对称分量,是共轭反对称分量,它们满足:
=,=
且:
:共轭对称分量,它的实部是偶函数,虚部是奇函数;:共轭反对称分量,它的实部是奇函数,虚部是偶函数。
下面研究DTFT的对称性,按下面两部分进行分析
a)将序列x(n)分成实部与虚部,即:
=+j(、都是实数序列)
则:
式中:=DTFT[]=,
=DTFT[j]=j。
结论:序列分成实部与虚部两部分,实部对应于中的,虚部和j一起对应于中的。
b)将序列分成共轭对称部分和共轭反对称部分,x(n)= +
∵=(+)
=(-)
将上面两式分别进行DTFT,得到:
DTFT[]=(+)=Re[]=
DTFT[]=()=jIm[]=j
∴=+j
x(n)= +
结论:序列的共轭对称部分对应于的实部,而序列的共轭反对称部分对应于的虚部加j。
应用:利用DTFT的对称性讨论当h(n)是实序列时,其DTFT的特性。
∵h(n)是实序列,所以它所对应的DTFT:=,具有共轭对称性,的实部偶对称,虚部奇对称。
5、时域卷积定理
设y(n)=x(n)*h(n)
则:=×= (2.2.32)
证明:y(n)= x(n)*h(n)=
=DTFT[y(n)]
= =
=
=
=
6、频域卷积定理
设y(n) = x(n) h(n)
则=*=
=
证明:==
=
=
=
=*
7、Parseval(帕斯维尔)(帕塞瓦尔)定理
= (2.2.34)
证明:
==
=
=
=
2.5 Z变换的定义与收敛域
一、Z变换的定义
若序列为x(n),则幂级数
(2.5.1)
称为序列x(n)的Z变换,也称为双边Z变换。式中z为复变量,它所在的复平面称为z平面。亦可将x(n)的Z变换表示为
ZT[x(n)] = X(z)
二、Z变换的收敛域
我们知道,是一幂级数,只有收敛时Z变换才有意义。X(z)收敛的条件是:
(2.5.3)
X(z)能够收敛的z取值集合称为X(z)的收敛域。
一般收敛域用环状域表示。即:
∴Z变换的公式
(2.5.1)
常见的Z变换是一个有理函数,表示为:
分子多项式的根是的零点,分母多项式的根是的极点。在极点处Z变换不存在。因此收敛域中没有极点,收敛域总是用极点限定其边界。
1、有限长序列Z变换的收敛域
有限长序列是指在有限区间n1≤n≤n2之间序列具有非零的有限值,在此区间外,序列值皆为零。有限长序列Z变换为,所以收敛域为
0
如n1≥0,收敛域为0
如n2≤0,收敛域为0≤|z|
2、右边序列Z变换的收敛域
右边序列是指在n≥n1时,x(n)有值,在n<n1时,x(n)=0。其Z变换为
此式右端第一项为有限长序列的Z变换,它的收敛域为0≤|z|。综合此两项,只有两项都收敛时级数才收敛。所以右边序列Z变换的收敛域为。
因果序列是最重要的一种右边序列,即n1=0的右边序列。收敛域为(也可以写成),所以,|z|=∞处Z变换收敛是因果序列的特征。
3、左边序列Z变换的收敛域
左边序列是指在n≤n2时,x(n)有值,n>n2时,x(n)=0。其Z变换为
此式第二项是有限长序列的Z变换,收敛域为0
4、双边序列Z变换的收敛域
这类序列是指n为任意值时x(n)皆有值的序列。双边序列的收敛域为
问题1:求序列x(n)= RN(n)的Z变换及收敛域,并画出收敛域。
解:X(z)==。因为这是有限长序列,所以收敛域为0
思考:RN(n)的DTFT存在吗?
问题2:x(n)=anu(n),求其Z变换及收敛域,并画出收敛域。
解:这是右边序列,且是因果序列,其Z变换为X(z)=。收敛域为(或写成)
思考:anu(n)的DTFT存在吗?
问题3:x(n)=-anu(-n-1),求其Z变换及收敛域,并画出收敛域。
解:这是一个左边序列。其Z变换为
,
收敛域为0≤|z|
思考:-anu(-n-1)的DTFT存在吗?
结论:当Z变换的收敛域中包含单位圆时,用Z变换可求出DTFT。
=(2.5.4)
上式称为单位圆上的Z变换就是离散时间傅立叶变换。
回顾:观察零极点。
结论:零点可以在复平面的任意处,但极点在收敛域的边缘或收敛域的外面。
2.5.3 Z反变换
已知序列的Z变换及其收敛域,求序列称为Z反变换。表示为x(n)=ZT-1[X(z)]
其中,c是X(z)收敛域中一条逆时针的闭合曲线。
求Z反变换的方法通常有三种:围线积分法(留数法)、部分分式展开法和长除法。
一、围线积分法(留数法)
直接计算围线积分比较麻烦,一般都采用留数定理来求解。按留数定理,若函数F(z)=X(z)zn-1在围线c上连续,在c以内有K个极点zk,则有
(2.5.6)
设zr是X(z)zn-1的单极点,则根据留数定理:
如果zk是L阶极点,则根据留数定理,
(2.5.8)
(2.5.8)表明,对于L阶极点,需要求L-1次导数,这是比较麻烦的。如果c内有多阶极点,而c外没有多阶极点时,可根据留数辅助定理改求c外所有极点之和,使问题简单化。
若函数F(z)=X(z)zn-1在围线c上连续,在c以内有K个极点zk,而在c以外有M个极点zm,(K,M为有限值)。现在c内有多阶极点,而c外没有多阶极点,根据留数辅助定理改求c外所有极点之和。得:
(2.5.9)(2.5.9)应用条件是X(z)zn-1在z=∞有两阶或二阶以上零点,即要分母多项式z的阶次比分子多项式z的阶次高二阶或二阶以上。
问题1:已知X(z)=z2/[(4-z)(z-1/4)],1/4
求Z反变换。
解:c,c为X(z)的收敛域
内的闭合围线,画出收敛域及c。
X(z)zn-1=。现在来看极点在围线c内部及外部的分布情况及极点阶数。
当时,函数在围线c内只有z=1/4处一个一阶极点,
=,
当时,函数在围线外部只有一个一阶极点z=4,而在围线的内部则有z=1/4处一阶极点及z=0处一(n+1)阶极点,所以采用围线外部的极点较方便。
=,
∴
问题2:已知X(z)=z2/[(4-z)(z-1/4)],|z|>4,
求Z反变换。
解:c,c为X(z)的收敛域
内的闭合围线。
X(z)zn-1=。现在来看在围c内部及外部的分布情况及极点阶数。
当时,
函数在围线c内z=1/4处有一个一阶极点,z=4处有一个一阶极点,
+
=,
当n=-1时,x(n)=0,∴x(n)= ,
当时,函数在围线外部没有一个极点,所以采用围线外部的极点较方便。由于围线外部没有一个极点,∴x(n)=0。
∴x(n)=()u(n)
二、部分分式展开法
对于大多数单极点的序列,常常用这种部分分式展开法求Z反变换。
X(z)=B(z)/A(z)= X1(z)+ X2(z)+…+ XK(z),则
=ZT-1[X1(z)]+ZT-1[ X2(z)]+…+ZT-1[XK(z)]
ZT-1[X1(z)]、ZT-1[ X2(z)]、…ZT-1[XK(z)]可从Z变换表中直接查表得出
问题1:设X(z)=z2/[(z-2)(z-0.5)],|z|>2,
求Z反变换。
解:X(z) =z2/[(z-2)(z-0.5)]
A1=,A2=
∴,
∵收敛域为|z|>2,∴x(n)=
三、幂级数展开法
因为的Z变换定义为z-1的幂级数,即
所以只要在给定得收敛域内,把X(z)展成幂级数,则级数的系数就是序列。
当X(z)的收敛域为|z|>Rx-时,则必为因果序列,此时应将X(z)展成z的负幂级数,为此,X(z)的分子分母应按z的降幂排列;
当X(z)的收敛域为|z|必为左边序列,X(z)的分子分母应按z的升幂排列;
问题1:已知,|z|>3
解:因为收敛域|z|>3,所以这是因果序列,因此,X(z)分子分母按z的降幂排列。
进行长除
2.5.4 Z变换的基本性质和定理
一、线性
线性就是要满足比例性和可加性。若
X(z) =ZT [x(n) ],
Y(z) = ZT [y(n) ],
则ZT[ax(n)+by(n)]=aX(z)+b Y(z),
,。
二、序列的移位
若X(z) = ZT [x(n) ],
则有ZT [x(n-m) ] =z-mX(z),
三、乘以指数序列
若X(z) =ZT [x(n) ],
则ZT [anx(n) ]=X(),
四、序列乘以n
若X(z) =ZT [x(n) ],
则ZT [n x(n) ]=-z,
五、复序列取共扼
一个复序列x(n)的共扼序列为x*(n)
若ZT [x(n) ] =X(z),
则ZT [x*(n) ] =X*(z*),
六、翻转序列
若ZT [x(n) ] =X(z),
则ZT [x(-n) ] =X(),
七、(因果序列)初值定理
对于因果序列x(n),即x(n)=0,n<0,ZT[x(n) ] =X(z)有
八、(因果序列)终值定理
设x(n)为因果序列,且X(z) = ZT [x(n) ]的极点处于单位圆|z|=1以内(单位圆上最多在z=1处可有一阶极点),则
九、序列的卷积和(时域卷积和定理)
设y(n)为x(n)与h(n)的卷积和
y(n)= x(n)*h(n)=
X(z) =ZT [x(n) ],
H(z) =ZT [h(n) ],
则Y(z) =ZT [y(n) ]= X(z) H(z),
十、序列相乘(z域卷积定理)
若y(n)= x(n)·h(n),且
X(z) =ZT [x(n) ],
H(z) =ZT [h(n) ],
则Y(z) =ZT [y(n) ]=ZT[x(n)·h(n)]
=,
其中c是v平面上,与H(v)的公共收敛域内环绕原点的一条反时针旋转的单封闭围线。
v平面收敛域为
或Y(z) =ZT [y(n) ]=ZT[x(n)·h(n)]
=,
其中c是v平面上,与X(v)的公共收敛域内环绕原点的一条反时针旋转的单封闭围线。
v平面收敛域为
十一、帕斯维尔(Parseval)定理
若X(z) =ZT [x(n) ],
H(z) =ZT [h(n) ],
且
则
v平面上,c所在的收敛域为
证明:Y(z) =ZT[x(n)·h*(n)]
=
=,
因为,所以z=1在收敛域中。令z=1代入上式,
=
v平面上,c所在的收敛域为
如果X(z),H(z)在单位圆上都收敛,则c可取为单位圆,即,则
如果h(n)=x(n),则进一步有。
2.5.5利用Z变换解差分方程
在第一章中介绍了差分方程的递推解法,下面介绍Z变换解法。这种方法将差分方程变成了代数方程,使求解过程简单
设N阶线性常系数差分方程为
(2.5.30)
一、求及
对(2.5.30)求双边Z变换:
=
=/=,h(n)=ZT-1[]
=,y(n)=ZT-1[]
2.6离散系统的系统函数,系统的频率响应
信号和系统的频率特性一般用序列的傅立叶变换和Z变换进行分析。
一、传输函数与系统函数
设系统初始状态为零,输出端对输入为单位抽样序列d(n)的响应,称为系统的单位抽样响应h(n)。对h(n)进行傅立叶变换得到:=,一般称为为系统的传输函数,它表征系统的频率特性。
将h(n)进行Z变换,得到,一般称H(z)为系统的系统函数,它表征了系统的复频域特性。
如已知系统的N阶线性常系数差分方程,进行双边Z变换,得到系统函数的一般表示式:
如果的收敛域包含单位圆|z|=1则,与的关系:=。即单位圆上的系统函数就是系统的传输函数
二、用系统函数的极点分布分析系统的因果性和稳定性
因果(可实现)系统其单位脉冲响应h(n)一定满足:当n<0时,h(n)=0,那么其系统函数的收敛域一定包含¥点。
系统稳定要求,对照ZT定义,系统稳定要求收敛域包含单位圆。
所以系统因果且稳定,收敛域包含¥点和单位圆,那么收敛域表示为:r
问题1:一个因果系统的系统函数为=,其中a为实数,问:a在哪些范围内才能使系统稳定?
解:因为系统因果,所以收敛域为|a|
三、利用系统的零极点分布分析系统的频率特性
=
将上式因式分解,得到:
=A
式中,是的零点,是其极点。A参数影响传输函数的幅度大小,影响系统特性的是零点和极点的分布。下面采用几何方法研究系统零极点分布对系统频率特性的影响。
=A
设系统稳定,将z=代入,得:
=A
在z平面上,-用一根由零点指向单位圆上点B的向量表示。同样-用由极点指向点B的向量表示,如图2.6.2。
将向量用极坐标表示:=,=,得到:
=A=
= |A| (2.6.8)
=(N=M)(2.6.9)
当频率w从零变化到2p时,这些向量的终点B沿单位圆逆时针旋转一周,按照(2.6.8)和(2.6.9)分别估算出系统的幅度特性和相位特性。
按照(2.6.8)知道零极点的分布后,可以很容易地确定零极点位置对系统特性的影响。当B点转到极点附近时,极点矢量长度最短因而幅度特性可能出现峰值,且极点愈靠近单位圆,极点矢量长度愈短,峰值愈高愈尖锐。如果极点在单位圆上,则幅度特性为¥,系统不稳定。对于零点,情况相反,当B点转到零点附近,零点矢量长度变短,幅度特性将出现谷值,零点愈靠近单位圆,谷值愈接近零。当零点处在单位圆上时,谷值为零。总结以上结论:极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。1.5模拟信号数字处理方法
数字信号处理技术优于模拟信号处理技术,故人们将模拟信号数字化,即经过采样、量化编码最终形成数字信号。
连续时间信号变为离散时间信号是由“采样”这一过程完成的。采样是将模拟信号数字化的第一个环节。它是利用周期性抽样脉冲序列(常用p(t)表示)从连续信号中抽取一系列的离散值来得到抽样信号的。如下图,根据每个脉冲宽度的不同,可将抽样分为两种:
理想抽样实际抽样
我们要研究的是,信号被抽样后其频谱将会有什么变化?在什么条件下,可从抽样信号中不失真地恢复原来信号xa(t)?
设:xa(t)的傅立叶变换为:,抽样脉冲序列p(t)的傅立叶变换为:,抽样信号的傅立叶变换为:,
∵= xa(t)p(t),∴。
由上图得,抽样脉冲序列p(t)的周期为T,则抽样频率。则周期信号p(t)的傅立叶变换,其中。
的傅立叶变换为:
一、理想抽样
p(t)=
=
=
∴
=
= xa(t) p(t),p(t)=
= xa(t) p(t)= xa(t)
==
二、抽样定理
要想抽样后能不失真的还原出原信号,则抽样频率必须大于两倍的信号谱最高频率即,这就是抽样定理。
对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。
= (1.5.5)
三、抽样的恢复
如果满足抽样定理,则抽样后不会产生频谱混叠,故将通过如图所示的理想低通滤波器,就可得到信号频谱。
虽然理想低通滤波器是不可实现的,但在一定精度范围内可以用可实现的滤波器来逼近
下面讨论如何由抽样值来恢复原来的模拟信号。即通过H(jW)系统的响应特性。理想低通滤波器的冲激响应为
由与h(t)的卷积积分,即得理想低通滤波器的输出为
=
=
这就是内插值公式,即由信号的抽样值经此公式而得到连续信号,而称为内插函数,如图所示,在抽样点mT上,函数值为1,其余抽样点上,函数值为0。
在每个抽样点上,只有该点所对应的内插函数不为零,这使得各抽样点上信号值不变,而抽样点之间的信号则由各加权抽样函数波形的延伸叠加而成,如下图所示。这个公式说明了只要抽样频率高于两倍信号最高频率,则整个连续信号就可完全用它的抽样值来代表,而不会丢掉如何信息。这就是抽样定理的意义。
总结:如果序列是通过对模拟信号采样得到的,有关系:x(n)=xa(nT),即序列值对于对模拟信号的采样值,或者说对于采样信号在t=nT时的幅度。
例:= sin(Wt),理想抽样后,
x(n)= =sin(WnT)= sin(nω0)
∴ω0=WT数字域频率与模拟角频率之间的关系。
ω0=WT=W/fs=2pf/fs 2. 4时域离散信号的傅立叶变换与模拟信号傅立叶变换之间的关系
连续信号的傅立叶变换及反变换公式如下:
=
理想抽样后的抽样信号为,
= xa(t) p(t) =
则抽样信号的傅立叶变换
=
离散时间信号x(n)=xa(nT),x(n)的傅立叶变换为:(2.2.1)
抽样信号的傅立叶变换与有什么关系?
可以证明,也可写成:
=,对照
= ,都是以周期进行周期延拓。
画时,以w为横轴,以周期进行周期延拓。
画时,以W为横轴,以周期进行周期延拓。
坐标轴之间的对应关系如下图所示。
在一些文献中经常使用归一化频率,因为,和都是无量纲量,刻度是一样的。
所以数字频率0、2p处是低频,p附近代表高频。
当抽样频率是信号最高频率4倍时,最高频率所对应的数字频率为。