python中 numpy_Python中的Numpy

python中 numpy

Python中的Numpy是什么? (What is Numpy in Python?)

Numpy is an array processing package which provides high-performance multidimensional array object and utilities to work with arrays. It is a basic package for scientific computation with python. It is a linear algebra library and is very important for data science with python since almost all of the libraries in the pyData ecosystem rely on Numpy as one of their main building blocks. It is incredibly fast, as it has bindings to C.

Numpy是一个数组处理程序包,它提供高性能的多维数组对象和实用程序来处理数组。 它是使用python进行科学计算的基本软件包。 它是一个线性代数库,对于使用python进行数据科学非常重要,因为pyData生态系统中的几乎所有库都依赖Numpy作为其主要构建模块之一。 它非常快,因为它与C具有绑定。

Some of the many features, provided by numpy are as always,

numpy提供的许多功能一如既往,

  1. N-dimensional array object

    N维数组对象

  2. Broadcasting functions

    广播功能

  3. Utilities for integrating with C / C++

    与C / C ++集成的实用程序

  4. Useful linear algebra and random number capabilities

    有用的线性代数和随机数功能

安装Numpy (Installing Numpy)

1) Using pip

1)使用点子

    pip install numpy

Installing output

安装输出

pip install numpy
Collecting numpy
Downloading https://files.pythonhosted.org/packages/60/9a/a6b3168f2194fb468dcc4cf54c8344d1f514935006c3347ede198e968cb0/numpy-1.17.4-cp37-cp37m-macosx_10_9_x86_64.whl (15.1MB)
100% |████████████████████████████████| 15.1MB 1.3MB/s 
Installing collected packages: numpy
Successfully installed numpy-1.17.4

2) Using Anaconda

2)使用水蟒

    conda install numpy

numpy中的数组 (Arrays in Numpy)

Numpy's main object is the homogeneous multidimensional array. Numpy arrays are two types: vectors and matrices. vectors are strictly 1-d arrays and matrices are 2-d.

Numpy的主要对象是齐次多维数组。 numpy数组有两种类型: 向量和矩阵向量严格是一维数组, 矩阵是二维。

In Numpy dimensions are known as axes. The number of axes is rank. The below examples lists the most important attributes of a ndarray object.

在Numpy中,尺寸称为轴。 轴数为等级。 以下示例列出了ndarray对象的最重要属性。

Example:

例:

# importing package
import numpy as np
# creating array
arr = np.array([[11,12,13],[14,15,16]])
print("Array is of type {}".format(type(arr)))
print("No. of dimensions {}".format(arr.ndim))
print("shape of array:{}".format(arr.shape))
print("size of array:{}".format(arr.size))
print("type of elements in the array:{}".format(arr.dtype))

Output

输出量

Array is of type <class 'numpy.ndarray'>
No. of dimensions 2
shape of array:(2, 3)
size of array:6
type of elements in the array:int64

创建一个numpy数组 (Creating a numpy array)

Creating a numpy array is possible in multiple ways. For instance, a list or a tuple can be cast to a numpy array using the. array() method (as explained in the above example). The array transforms a sequence of the sequence into 2-d arrays, sequences of sequences into a 3-d array and so on.

创建numpy数组的方式有多种。 例如,可以使用将列表或元组强制转换为numpy数组。 array()方法 (如以上示例中所述)。 数组将序列的序列转换为2维数组,将序列的序列转换为3维数组,依此类推。

To create sequences of numbers, NumPy provides a function called arange that returns arrays instead of lists.

为了创建数字序列,NumPy提供了一个称为arange的函数,该函数返回数组而不是列表。

Syntax:

句法:

    # returns evenly spaced values within a given interval. 
arange([start,] stop [,step], dtype=None) 

Example:

例:

x = np.arange(10,30,5)
print(x)
# Ouput: [10 15 20 25]

The function zeros create an array full of zeros, the function ones create an array full of ones, and the function empty creates an array whose initial content is random and depends on the state of the memory. By default, the dtype of the created array is float64.

函数零将创建一个由零组成的数组,函数一个将创建由零组成的数组,函数空将创建一个数组,其初始内容是随机的,并且取决于内存的状态。 默认情况下,创建的数组的dtype为float64。

Example:

例:

# importing package
import numpy as np
x = np.zeros((3,4))
print("np.zeros((3,4))...")
print(x)
x = np.ones((3,4))
print("np.ones((3,4))...")
print(x)
x = np.empty((3,4))
print("np.empty((3,4))...")
print(x)
x = np.empty((1,4))
print("np.empty((1,4))...")
print(x)

Output

输出量

np.zeros((3,4))...
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
np.ones((3,4))...
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
np.empty((3,4))...
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
np.empty((1,4))...
[[1.63892563e-316 0.00000000e+000 2.11026305e-312 2.56761491e-312]]

numpy函数 (Numpy functions)

Some more function available with NumPy to create an array are,

NumPy提供了一些更多的函数来创建数组,

1) linspace()

1)linspace()

It returns an evenly spaced numbers over a specified interval.

它在指定的间隔内返回均匀间隔的数字。

Syntax:

句法:

    linspace(start, stop, num=50, endpoint=True, restep=False, dtype=None) 

Example:

例:

# importing package
import numpy as np
x = np.linspace(1,3,num=10)
print(x)

Output

输出量

[1.         1.22222222 1.44444444 1.66666667 1.88888889 2.11111111
2.33333333 2.55555556 2.77777778 3.        ]

2) eye()

2)眼睛()

It returns a 2-D array with ones on the diagonal and zeros elsewhere.

它返回一个二维数组,对角线上有一个,其他位置为零。

Syntax:

句法:

    eye(N, M=None, k=0, dtype=<class 'float'>, order='C')

Example:

例:

# importing package
import numpy as np
x = np.eye(4)
print(x)

Output

输出量

[[1. 0. 0. 0.] [0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

3) random()

3)random()

It creates an array with random numbers

它创建一个带有随机数的数组

Example:

例:

# importing package
import numpy as np
x = np.random.rand(5)
print("np.random.rand(5)...")
print(x)
x = np.random.rand(5,1)
print("np.random.rand(5,1)...")
print(x)
x = np.random.rand(5,1,3)
print("np.random.rand(5,1,3)...")
print(x)
# returns a random number
x = np.random.randn() 
print("np.random.randn()...")
print(x)
# returns a 2-D array with random numbers
x = np.random.randn(2,3) 
print("np.random.randn(2,3)...")
print(x)
x = np.random.randint(3)
print("np.random.randint(3)...")
print(x)
# returns a random number in between low and high
x = np.random.randint(3,100) 
print("np.random.randint(3,100)...")
print(x)
# returns an array of random numbers of length 34
x = np.random.randint(3,100,34)
print("np.random.randint(3,100,34)...")
print(x)

Output

输出量

np.random.rand(5)...[0.87417146 0.77399086 0.40012698 0.37192848 0.98260636]
np.random.rand(5,1)...
[[0.712829  ]
[0.65959462]
[0.41553044]
[0.30583293]
[0.83997539]]
np.random.rand(5,1,3)...
[[[0.75920149 0.54824968 0.0547891 ]]
[[0.70911911 0.16475541 0.5350475 ]]
[[0.74052103 0.4782701  0.2682752 ]]
[[0.76906319 0.02881364 0.83366651]]
[[0.79607073 0.91568043 0.7238144 ]]]
np.random.randn()...
-0.6793254693909823
np.random.randn(2,3)...
[[ 0.66683143  0.44936287 -0.41531392]
[ 1.86320357  0.76638331 -1.92146833]]
np.random.randint(3)...
1
np.random.randint(3,100)...
53
np.random.randint(3,100,34)...
[43 92 76 39 78 83 89 87 96 59 32 74 31 77 56 53 18 45 78 21 46 10 25 86
64 29 49  4 18 19 90 17 62 29]

4) Reshape method (shape manipulation)

4)整形方法(形状处理)

An array has a shape given by the number of elements along each axis,

数组的形状由沿每个轴的元素数确定,

# importing package
import numpy as np
x = np.floor(10*np.random.random((3,4)))
print(x)
print(x.shape)

Output

输出量

[[0. 2. 9. 4.] 
[0. 4. 1. 7.]
[9. 7. 6. 2.]]
(3, 4)

The shape of an array can be changes with various commands. However, the shape commands return all modified arrays but do not change the original array.

数组的形状可以通过各种命令进行更改。 但是,shape命令返回所有修改后的数组,但不更改原始数组。

# importing package
import numpy as np
x = np.floor(10*np.random.random((3,4)))
print(x)
# returns the array, flattened
print("x.ravel()...")
print(x.ravel()) 
# returns the array with modified shape
print("x.reshape(6,2)...")
print(x.reshape(6,2)) 
# returns the array , transposed
print("x.T...")
print(x.T) 
print("x.T.shape...")
print(x.T.shape)
print("x.shape...")
print(x.shape)

Output

输出量

[[3. 1. 0. 6.] [3. 1. 2. 4.]
[7. 0. 0. 1.]]
x.ravel()...
[3. 1. 0. 6. 3. 1. 2. 4. 7. 0. 0. 1.]
x.reshape(6,2)...
[[3. 1.]
[0. 6.]
[3. 1.]
[2. 4.]
[7. 0.]
[0. 1.]]
x.T...
[[3. 3. 7.] [1. 1. 0.]
[0. 2. 0.]
[6. 4. 1.]]
x.T.shape...
(4, 3)
x.shape...
(3, 4)

其他方法 (Additional methods)

# importing package
import numpy as np
x = np.floor(10*np.random.random((3,4)))
print(x)
#Return the maximum value in an array
print("x.max():", x.max())
# Return the minimum value in a array
print("x.min():", x.min())
# Return the index of max value in an array
print("x.argmax():", x.argmax())
# Return the index of min value in an array
print("x.argmin():", x.argmin())

Output

输出量

[[4. 0. 5. 2.] [8. 5. 9. 7.]
[9. 3. 5. 5.]]
x.max(): 9.0
x.min(): 0.0
x.argmax(): 6
x.argmin(): 1

翻译自: https://www.includehelp.com/python/numpy.aspx

python中 numpy

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/540520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[转载] python之路《第二篇》Python基本数据类型

参考链接&#xff1a; Python中的Inplace运算符| 1(iadd()&#xff0c;isub()&#xff0c;iconcat()…) 运算符 1、算数运算&#xff1a; 2、比较运算&#xff1a; 3、赋值运算&#xff1a; 4、逻辑运算&#xff1a; 5、成员运算&#xff1a; 6、三元运算 三元运算&…

数据结构 基础知识

一。逻辑结构: 是指数据对象中数据 素之间的相互关系。 其实这也是我 今后最需要关注的问题 逻辑结构分为以 四种1. 集合结构 2.线性结构 3.数形结构 4&#xff0c;图形结构 二。物理结构&#xff1a; 1&#xff0c;顺序存储结,2 2. 链式存储结构 一&#xff0c;时间复杂…

ruby 变量类中范围_Ruby中的类

ruby 变量类中范围Ruby类 (Ruby Classes) In the actual world, we have many objects which belong to the same category. For instance, I am working on my laptop and this laptop is one of those laptops which exist around the globe. So, this laptop is an object o…

以云计算的名义 驻云科技牵手阿里云

本文讲的是以云计算的名义 驻云科技牵手阿里云一次三个公司的牵手 可能会改变无数企业的命运 2017年4月17日&#xff0c;对于很多人来说可能只是个平常的工作日&#xff0c;但是对于国内无数的企业来说却可能是个会改变企业命运的日。驻云科技联合国内云服务提供商阿里云及国外…

[转载] python学习笔记

参考链接&#xff1a; Python | a b并不总是a a b 官网http://www.python.org/ 官网library http://docs.python.org/library/ PyPI https://pypi.python.org/pypi 中文手册&#xff0c;适合快速入门 http://download.csdn.net/detail/xiarendeniao/4236870 py…

标志寄存器_访问标志寄存器,并与寄存器B |交换标志寄存器F的内容 8085微处理器...

标志寄存器Problem statement: 问题陈述&#xff1a; Write an assembly language program in 8085 microprocessor to access Flag register and exchange the content of flag register F with register B. 在8085微处理器中编写汇编语言程序以访问标志寄存器&#xff0c;并…

浏览器端已支持 ES6 规范(包括 export import)

当然&#xff0c;是几个比较优秀的浏览器&#xff0c;既然是优秀的浏览器&#xff0c;大家肯定知道是那几款啦&#xff0c;我就不列举了&#xff0c;我用的是 chrome。 对 script 声明 type 为 module 后就可以享受 es6 规范所带来的模块快感了。 基础语法既然是全支持&#xf…

[转载] Python学习:Python成员运算符和身份运算符

参考链接&#xff1a; Python中和is运算符之间的区别 Python成员运算符 除了以上的一些运算符之外&#xff0c;Python还支持成员运算符&#xff0c;测试实例中包含了一系列的成员&#xff0c;包括字符串&#xff0c;列表或元组。 运算符 描述 实例 in 如果在指定的序列中找…

量词逻辑量词里面的v表示?_代理知识表示中的量词简介(基于人工智能)

量词逻辑量词里面的v表示&#xff1f;As we know that in an AI-based agent, the knowledge is represented through two types of logic: The propositional logic and the predicate logic. In the propositional logic, we have declarative sentences, and in the predica…

[转载] Python 机器学习经典实例

参考链接&#xff1a; Python中的逻辑门 内容介绍 在如今这个处处以数据驱动的世界中&#xff0c;机器学习正变得越来越大众化。它已经被广泛地应用于不同领域&#xff0c;如搜索引擎、机器人、无人驾驶汽车等。本书首先通过实用的案例介绍机器学习的基础知识&#xff0c;然后…

哈希表的最差复杂度是n2_给定数组A []和数字X,请检查A []中是否有对X | 使用哈希O(n)时间复杂度| 套装1...

哈希表的最差复杂度是n2Prerequisite: 先决条件&#xff1a; Hashing data structure 散列数据结构 Problem statement: 问题陈述&#xff1a; Given an array and a sum X, fins any pair which sums to X. Expected time complexity O(n). 给定一个数组和一个和X &#xff…

一文读懂深度学习框架下的目标检测(附数据集)

从简单的图像分类到3D位置估算&#xff0c;在机器视觉领域里从来都不乏有趣的问题。其中我们最感兴趣的问题之一就是目标检测。 如同其他的机器视觉问题一样&#xff0c;目标检测目前为止还没有公认最好的解决方法。在了解目标检测之前&#xff0c;让我们先快速地了解一下这个领…

[转载] Python-Strings

参考链接&#xff1a; Python成员资格和身份运算符 &#xff5c; in, not in, is, is not Strings 介绍 String是Python中最常用的类型。仅仅用引号括起字符就可以创建string变量。字符串使用单引号或双引号对Python来说是一样的。 var1 Hello World! var2 "Pyth…

aes-128算法加密_加密算法问题-人工智能中的一种约束满意问题

aes-128算法加密The Crypt-Arithmetic problem in Artificial Intelligence is a type of encryption problem in which the written message in an alphabetical form which is easily readable and understandable is converted into a numeric form which is neither easily…

读书笔记《集体智慧编程》Chapter 2 : Make Recommendations

本章概要本章主要介绍了两种协同过滤&#xff08;Collaborative Filtering&#xff09;算法&#xff0c;用于个性化推荐&#xff1a;基于用户的协同过滤&#xff08;User-Based Collaborative Filtering&#xff0c;又称 K-Nearest Neighbor Collaborative Filtering&#xff0…

[转载] python中的for循环对象和循环退出

参考链接&#xff1a; Python中循环 流程控制-if条件 判断条件&#xff0c;1位true&#xff0c;0是flesh&#xff0c;成立时true&#xff0c;不成立flesh&#xff0c;not取反 if 1; print hello python print true not取反&#xff0c;匹配取反&#xff0c;表示取非1…

设计一个应用程序,以在C#中的按钮单击事件上在MessageBox中显示TextBox中的文本...

Here, we took two controls on windows form that are TextBox and Button, named txtInput and btnShow respectively. We have to write C# code to display TextBox’s text in the MessageBox on Button Click. 在这里&#xff0c;我们在Windows窗体上使用了两个控件&…

Oracle优化器:星型转换(Star Query Transformation )

Oracle优化器&#xff1a;星型转换&#xff08;Star Query Transformation &#xff09;Star query是一个事实表&#xff08;fact table&#xff09;和一些维度表&#xff08;dimension&#xff09;的join。每个维度表都跟事实表通过主外键join&#xff0c;且每个维度表之间不j…

[转载] python循环中break、continue 、exit() 、pass的区别

参考链接&#xff1a; Python中的循环和控制语句(continue, break and pass) 1、break&#xff1a;跳出循环&#xff0c;不再执行 用在while和for循环中 用来终止循环语句&#xff0c;即循环条件没有False条件或者序列还没被完全递归完&#xff0c;也会停止执行循环语句 如果…

JavaScript | 声明数组并使用数组索引分配元素的代码

Declare an array, assign elements by indexes and print all elements in JavaScript. 声明一个数组&#xff0c;通过索引分配元素&#xff0c;并打印JavaScript中的所有元素。 Code: 码&#xff1a; <html><head><script>var fruits [];fruits[0]"…