Thrift 提供了如图五种模式:TSimpleServer、TNonblockingServer、THsHaServer、TThreadPoolServer、TThreadSelectorServer
TSimpleServer、TThreadPoolServer 属于阻塞模型
TNonblockingServer、THsHaServer、TThreadedSelectorServer 属于非阻塞模型
TServer
TServer 为抽象类
public static class Args extends AbstractServerArgs<Args> {public Args(TServerTransport transport) {super(transport);} }public static abstract class AbstractServerArgs<T extends AbstractServerArgs<T>> {final TServerTransport serverTransport;// 处理层工厂 TProcessorFactory processorFactory;// 传输层工厂TTransportFactory inputTransportFactory = new TTransportFactory();TTransportFactory outputTransportFactory = new TTransportFactory();// 协议层工厂TProtocolFactory inputProtocolFactory = new TBinaryProtocol.Factory();TProtocolFactory outputProtocolFactory = new TBinaryProtocol.Factory(); }
TServer 定义的对外方法
/*** The run method fires up the server and gets things going.*/public abstract void serve(); /*** Stop the server. This is optional on a per-implementation basis. Not* all servers are required to be cleanly stoppable.*/public void stop() {}
stop 并不是每个服务都需要优雅的退出,所以没有定义为抽象方法
抽象方法 serve() 由具体的 TServer 实例实现
TSimpleServer
TSimpleServer 实现比较简单,是单线程阻塞模型,只适合测试开发使用
serve 方法源码分析
public void serve() {// 启动监听 socket serverTransport.listen();// 设置服务状态setServing(true);// 不断的等待与处理 socket 请求while(!stopped) {// accept 一个业务 socket 请求client = serverTransport_.accept();if (client != null) {// 通过工厂获取 server 定义的处理层、传输层和协议层processor = processorFactory_.getProcessor(client);inputTransport = inputTransportFactory_.getTransport(client);outputTransport = outputTransportFactory_.getTransport(client);inputProtocol = inputProtocolFactory_.getProtocol(inputTransport);outputProtocol = outputProtocolFactory_.getProtocol(outputTransport);if (eventHandler_ != null) {connectionContext = eventHandler_.createContext(inputProtocol, outputProtocol);}// 阻塞式处理while (true) {// 处理请求事件if (eventHandler_ != null) {eventHandler_.processContext(connectionContext, inputTransport, outputTransport);}// 如果处理层为异步,则退出if(!processor.process(inputProtocol, outputProtocol)) {break;}}}// 关闭 eventHandler_.deleteContext(connectionContext, inputProtocol, outputProtocol);inputTransport.close();outputTransport.close();setServing(false);} }
TSimpleServer 工作图
TThreadPoolServer
ThreadPoolServer 解决了 TSimple 不支持并发和多连接的问题,引入了线程池
与 TSimple 相同,主线程负责阻塞式监听 socket,而剩下的业务处理则全部交由线程池去处理
public void serve() {// 主线程启动监听 socket serverTransport_.listen();// 设置服务状态stopped_ = false;setServing(true);// 等待并处理 socket 请求while (!stopped_) {TTransport client = serverTransport_.accept();// Runnable run 逻辑与 TSimpleServer 类似WorkerProcess wp = new WorkerProcess(client);int retryCount = 0;long remainTimeInMillis = requestTimeoutUnit.toMillis(requestTimeout);while(true) {// 交由线程池来处理 executorService_.execute(wp);break;} }executorService_.shutdown();setServing(false); }
TThreadPoolServer 的缺点:
处理能力的好坏受限于线程池的设置
TNoblockingServer
TNoblockingServer 是单线程工作,但该模式采用了 NIO,所有的 socket 被注册到 selector 中,通过一个线程循环 selector 来监控所有 socket,当有就绪的 socket 时,根据不同的请求做不同的动作(读取、写入数据或 accept 新连接)
TNoblockingServer 的 serve 方法在其父类 AbstractNonblockingServer 中定义
/*** Begin accepting connections and processing invocations.* 开始接受并处理调用*/ public void serve() {// start any IO threads// 注册一些监听 socket 的线程到 selector 中if (!startThreads()) {return;}// start listening, or exit// 开始监听if (!startListening()) {return;}// 设置服务状态setServing(true);// this will block while we serve// TNonblocking 中实现为 selectAcceptThread_.join(); // 主线程等待 selectAcceptThread 执行完毕// SelectAcceptThread 的 run 方法为 select();// 取出一个就绪的 socket waitForShutdown();setServing(false);// do a little cleanup stopListening(); }// SelectAcceptThread run 方法 public void run() {while (!stopped_) {select();processInterestChanges();}for (SelectionKey selectionKey : selector.keys()) {cleanupSelectionKey(selectionKey);} }// SelectAcceptThread Select 过程 private void select() {try {// wait for io events.// NIO 取出一个 selector.select();// process the io events we receivedIterator<SelectionKey> selectedKeys = selector.selectedKeys().iterator();// 遍历就绪的 socketwhile (!stopped_ && selectedKeys.hasNext()) {SelectionKey key = selectedKeys.next();selectedKeys.remove();// if the key is marked Accept, then it has to be the server// transport.// accept 新 socket 并将其注册到 selector 中if (key.isAcceptable()) {handleAccept();} else if (key.isReadable()) {// deal with reads// 处理读数据的 socket 请求 handleRead(key);} else if (key.isWritable()) {// deal with writes// 处理写数据的 socket 请求 handleWrite(key);} else {LOGGER.warn("Unexpected state in select! " + key.interestOps());}}} catch (IOException e) {LOGGER.warn("Got an IOException while selecting!", e);} }// 接收新的连接 private void handleAccept() throws IOException {SelectionKey clientKey = null;TNonblockingTransport client = null;// accept the connectionclient = (TNonblockingTransport)serverTransport.accept();// 注册到 selector 中clientKey = client.registerSelector(selector, SelectionKey.OP_READ);// add this key to the mapFrameBuffer frameBuffer = createFrameBuffer(client, clientKey, SelectAcceptThread.this);clientKey.attach(frameBuffer); }
TNonblockingServer 模式的缺点:
其还是采用单线程顺序来完成,当业务处理比较复杂耗时,该模式的效率将会下降
TNonblockingServer 工作图:
THsHaServer
THsHaServer 是 TNoblockingServer 的子类,处理逻辑基本相同,不同的是,在处理读取请求时,THsHaServer 将处理过程交由线程池来完成,主线程直接返回进行下一次循环,提高了效率
THsHaServer 模式的缺点:
其主线程需要完成对所有 socket 的监听一级数据的写操作,当大请求量时,效率较低
TThreadedSelectorServer
TThreadedSelectorServer 是 Thrift 目前提供的最高级模式,生产环境的首选,其对 TNonblockingServer 进行了扩展
TThreadedSelectorServer 源码中一些关键的属性
public static class Args extends AbstractNonblockingServerArgs<Args> {// 在已接收的连接中选择线程的个数public int selectorThreads = 2;// 执行线程池 ExecutorService 的线程个数private int workerThreads = 5;// 执行请求具体任务的线程池private ExecutorService executorService = null; } // The thread handling all accepts private AcceptThread acceptThread; // Threads handling events on client transports private final Set<SelectorThread> selectorThreads = new HashSet<SelectorThread>(); // This wraps all the functionality of queueing and thread pool management // for the passing of Invocations from the selector thread(s) to the workers // (if any). private final ExecutorService invoker; /*** 循环模式的负载均衡器,用于为新的连接选择 SelectorThread*/ protected static class SelectorThreadLoadBalancer {}
-
AcceptThread 线程对象,用于监听 socket 的新连接
-
多个 SelectorThread 线程对象,用于处理 socket 的读写操作
-
一个负载均衡对象 SelectorThreadLoadBalancer,用于决定将 AcceptThread 接收到的 socket 请求分配给哪个 SelectorThread 线程
-
SelectorThread 线程执行过读写操作后,通过 ExecutorService 线程池来完成此次调用的具体执行
SelectorThread 对象源码解析
/*** 多个 SelectorThread 负责处理 socket 的 I/O 操作*/ protected class SelectorThread extends AbstractSelectThread {/*** The work loop. Handles selecting (read/write IO), dispatching, and* managing the selection preferences of all existing connections.* 选择(处理 socket 的网络读写 IO),分配和管理现有连接*/public void run() {while (!stopped_) {select();}}private void select() {// process the io events we receivedIterator<SelectionKey> selectedKeys = selector.selectedKeys().iterator();while (!stopped_ && selectedKeys.hasNext()) {SelectionKey key = selectedKeys.next();selectedKeys.remove();// skip if not validif (!key.isValid()) {cleanupSelectionKey(key);continue;}if (key.isReadable()) {// deal with reads handleRead(key);} else if (key.isWritable()) {// deal with writes handleWrite(key);} else {LOGGER.warn("Unexpected state in select! " + key.interestOps());}}} }
AcceptThread 对象源码解析
/*** 在服务器传输中选择线程(监听 socket 请求)并向 IO 选择器(SelectorThread)提供新连接*/ protected class AcceptThread extends Thread {// The listen socket to accept onprivate final TNonblockingServerTransport serverTransport;private final Selector acceptSelector;// 负载均衡器,决定将连接分配给哪个 SelectorThreadprivate final SelectorThreadLoadBalancer threadChooser;public void run() {while (!stopped_) {select();}}private void select() {// process the io events we receivedIterator<SelectionKey> selectedKeys = acceptSelector.selectedKeys().iterator();while (!stopped_ && selectedKeys.hasNext()) {SelectionKey key = selectedKeys.next();selectedKeys.remove();// 处理接收的新情求if (key.isAcceptable()) {handleAccept();} else {LOGGER.warn("Unexpected state in select! " + key.interestOps());}}}/*** Accept a new connection.*/private void handleAccept() {final TNonblockingTransport client = doAccept();if (client != null) {// 从负载均衡器中,获取 SelectorThread 线程final SelectorThread targetThread = threadChooser.nextThread();if (args.acceptPolicy == Args.AcceptPolicy.FAST_ACCEPT || invoker == null) {doAddAccept(targetThread, client);} else {// FAIR_ACCEPTinvoker.submit(new Runnable() {public void run() {// 将选择到的线程和连接放入 线程池 处理// 用 targetThread 线程取处理一个给接受的链接 client,如果新连接的队列处于满的状态,则将处于阻塞状态 doAddAccept(targetThread, client);}});}}}private TNonblockingTransport doAccept() {return (TNonblockingTransport) serverTransport.accept();}// 用 targetThread 线程取处理一个给接受的链接 client,如果新连接的队列处于满的状态,则将处于阻塞状态private void doAddAccept(SelectorThread thread, TNonblockingTransport client) {if (!thread.addAcceptedConnection(client)) {client.close();}} }
TThreadedSelectorServer 工作图
参考资料
- Thrift server端的几种工作模式分析:http://blog.csdn.net/houjixin/article/details/42779915
- Thrift 网络服务模型:http://www.cnblogs.com/mumuxinfei/p/3875165.html