摘要: 一杯茶的功夫部署完成机器学习模型!
在生产环境中部署机器学习模型是数据工程中经常被忽视的领域。网上的大多数教程/博客都侧重于构建、训练和调整机器学习模型。如果它不能用于实际的预测,那么它又有什么用呢? 接下来了解一下有哪些部署选项吧:
评估选项
在生产中部署机器学习模型时,有多种选择。其中一种流行的方法是使用Azure Machine Learning Studio等云服务设计和训练模型,这些服务具有使用拖放工具构建和训练模型的能力。此外,将这些模型作为Web服务发布只需点击几下即可。此类设置的附加优势在于,该部署会随着应用程序使用量的增加而自动扩展。
虽然短时间看起来很方便,但从长远来看,这种设置可能会有问题。当我们想要将应用程序从第三方云平台迁移并将其部署在我们的服务器上时,就有难度了。由于这些工具与其各自的云平台紧密集成,因此这种设置不可移植。此外,随着应用程序的扩展,云计算的成本可能是一个令人望而却步的因素。
如果我们构建自定义REST-API作为机器学习模型的终点,则可以避免这些问题。特别是,本文将使用基于Python的Flask Web框架来为模型构建API,然后将这个flask应用程序整齐地集成到Docker映像中来进行部署。Docker显然适合解决这个问题,因为应用程序的所有依赖项都可以打包在容器中,并且可以通过必要时刻简单地部署更多容器来实现可伸缩性。这种部署架构本质上是可扩展的、成本有效的和便携的。
Docker:Docker是一种开源的容器化技术,允许开发人员将应用程序与依赖库打包在一起,并将其与底层操作系统隔离开来。与VM不同,docker不需要每个应用程序的Guest虚拟机操作系统,因此可以维护轻量级资源管理系统。与容器相比,虚拟机更重量级,因此容器可以相对快速地旋转,同时具有较低的内存占用,这有助于将来我们的应用程序和模型的可伸缩性。
Jenkins:Jenkins可能是最受欢迎的持续集成和持续交付工具,大约拥有1400个插件,可自动构建和部署项目。Jenkins提供了一个在其管道中添加GitHub web-hook的规定,这样每次开发人员将更改推送到GitHub存储库时,它都会自动开始为修改后的模型运行验证测试,并构建docker镜像来进行部署。
ngrok:ngrok是一个免费工具,可将公共URL传送到本地运行的应用程序它会生成一个可以在GitHub web-hook中用于触发推送事件的URL。
Flask:Flask是一个用Python编写的开源Web框架,内置开发服务器和调试器。虽然有许多可以替代Web框架来创建REST API,但Flask的简单性备受青睐。
部署
你可能想知道“我进入了什么样的环状土地?”但我保证接下来的步骤将变得简单实用。到目前为止,我们已经了解了部署体系结构中的不同组件以及每个组件的功能的简要说明。在本节中,将介绍部署模型的详细步骤。
部署过程可以暂时分为四个部分:构建和保存模型、使用REST API公开模型,将模型打包在容器内以及配置持续集成工具。
在继续下一步之前,使用以下命令将GitHub存储库复制到本地计算机。 此存储库包含所有代码文件,可用作部署自定义模型的参考。
git clone git@github.com:EkramulHoque/docker-jenkins-flask-tutorial.git
注:虽然以上提到的步骤适用于Windows操作系统,但修改这些命令以在Mac或Unix系统上运行应该是很简单的。
训练和保存模型
在本例中,使用来自scikit-learn的鸢尾花数据集来构建我们的机器学习模型。在加载数据集后,提取用于模型训练的特征(x)和目标(y)。为了进行预测,先创建一个名为“labels”的字典,其中包含目标的标签名称,这里将决策树分类器用作模型。你可以在sklearn随意尝试其他分类器 ,通过调用模型上的方法来生成测试数据的预测标签。
我们使用pickle库将模型导出为pickle文件,并将模型保存在磁盘上。从文件加载模型后,我们将样本数据作为模型的输入并预测其目标变量。
#!/usr/bin/env python# coding: utf-8import picklefrom sklearn import datasetsiris=datasets.load_iris()x=iris.datay=iris.target#labels for iris datasetlabels ={ 0: "setosa