关于InnoDB索引,我们可能知道InnDB索引是用B+树实现的,而B+树就是一种能优化查询速度的数据结构。但我们又没想过这样一个问题,能优化查询速度的数据结构有很多,为什么InnoDB要采用B+树?
常见优化查询速度数据结构
哈希表
哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。
不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。
假设现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:
图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 IDcardn2 对应的名字是什么,处理步骤就是:首先,将 IDcardn2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。
需要注意的是,图中四个 IDcardn 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。
可以设想下,如果现在要找身份证号在[IDcardX, IDcardY]这个区间的所有用户,就必须全部扫描一遍了。
所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。
有序数组
有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:
这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 IDcardn2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。
同时很显然,这个索引结构支持范围查询。要查身份证号在[IDcardX, IDcardY]区间的 User,可以先用二分法找到 IDcardX(如果不存在 IDcardX,就找到大于 IDcardX 的第一个 User),然后向右遍历,直到查到第一个大于 IDcardY 的身份证号,退出循环。
如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
所以,有序数组索引只适用于静态存储引擎,比如要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。
二叉搜索树
上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查 IDcardn2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。
当然为了维持 O(log(N)) 的查询复杂度,就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。
树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。
以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。
N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。
数据库引擎常用数据结构
B树
B树也称B-树,它是一颗多路平衡查找树,B树和后面讲到的B+树也是从最简单的二叉树变换而来的,并没有什么神秘的地方,下面我们来看看B树的定义。
每个节点最多有m-1个关键字(可以存有的键值对)。
根节点最少可以只有1个关键字。
非根节点至少有m/2个关键字。
每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。
所有叶子节点都位于同一层,或者说根节点到每个叶子节点的长度都相同。
每个节点都存有索引和数据,也就是对应的key和value。
B+树
B+树其实和B树是非常相似的,我们首先看看相同点。
相同点: 根节点至少一个元素 非根节点元素范围:m/2 <= k <= m-1
不同点: B+树有两种类型的节点:内部结点(也称索引结点)和叶子结点。内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点。内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。 每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。 父节点存有右孩子的第一个元素的索引。
总结
B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。
B+ 树的优点在于:
由于B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。
B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。
但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。
往期推荐
深入学习G1垃圾收集器
Redisson分布式锁自动续期源码分析
spring中发布订阅模式实践