同态比较算法

参考文献:

  1. [PS73] Paterson M S, Stockmeyer L J. On the number of nonscalar multiplications necessary to evaluate polynomials[J]. SIAM Journal on Computing, 1973, 2(1): 60-66.
  2. [IZ21] Iliashenko I, Zucca V. Faster homomorphic comparison operations for BGV and BFV[J]. Proceedings on Privacy Enhancing Technologies, 2021, 2021(3): 246-264.

文章目录

  • 快速的多项式求值算法
    • 算法 A
    • 算法 B
    • 算法 C
  • 基于插值的比较算法
    • 有限域上的比较函数
    • 双变元多项式插值
    • 单变元多项式插值
    • 其他应用

快速的多项式求值算法

对于 n n n 长多项式 P ( x ) P(x) P(x),如果要计算 n n n 个单位根上的函数值 P ( ξ i ) P(\xi^i) P(ξi),那么使用 FFT/NTT 可以实现 O ( n log ⁡ n ) O(n\log n) O(nlogn) 的复杂度,均摊成本 O ( log ⁡ n ) O(\log n) O(logn)。但是如果我们对单个的任意点 x x x 求值 P ( x ) P(x) P(x),那应该怎么快速计算呢?这儿的 “快速” 指的是更少的 “非标量乘法” 数量。标量乘法的开销类似于加法,后文我们默认 “乘法” 代指非标量乘法。

Horner rule ∑ i = 0 n a i x i = ( ⋯ ( ( a n x + a n − 1 ) x + a n − 2 ) ⋯ ) x + a 0 \sum_{i=0}^na_ix^i = (\cdots((a_nx+a_{n-1})x+a_{n-2})\cdots)x+a_0 i=0naixi=(((anx+an1)x+an2))x+a0,一共需要 n n n 次乘法。

[PS73] 提出了只需 O ( n ) O(\sqrt n) O(n ) 次乘法的多项式单点求值算法。首先可以证明,多项式求值的复杂度下界为 O ( n ) O(\sqrt n) O(n )

在这里插入图片描述

然后 [PS73] 依次提出了三种多项式求值算法。

算法 A

定理:度数 n n n 的任意多项式,存在使用了 n / 2 + O ( log ⁡ n ) n/2+O(\log n) n/2+O(logn) 次乘法的求值算法。

方便起见,我们假设 n = 2 m − 1 n=2^m-1 n=2m1(多项式长度 2 m 2^m 2m),同时多项式是首一的,

  1. 首先预计算 x 2 , x 4 , x 8 , ⋯ , x 2 m − 1 x^2,x^4,x^8,\cdots,x^{2^{m-1}} x2,x4,x8,,x2m1,花费 log ⁡ n \log n logn 次乘法

  2. 给定某 2 p − 1 2p-1 2p1 次的首一多项式,把它写成如下形式:
    x 2 p − 1 + a 2 p − 2 x 2 p − 2 + ⋯ + a 1 x + a 0 = ( x p + c ) ( x p − 1 + a 2 p − 2 x p − 2 + ⋯ + a p + 1 x + a p ) + ( x p − 1 + b p − 2 x p − 2 + ⋯ + b 1 x + b 0 ) \begin{aligned} &\,\, x^{2p-1}+a_{2p-2}x^{2p-2}+\cdots+a_1x+a_0\\ =&\,\, (x^p+c)(x^{p-1}+a_{2p-2}x^{p-2}+\cdots+a_{p+1}x+a_p)\\ +&\,\, (x^{p-1}+b_{p-2}x^{p-2}+\cdots+b_1x+b_0) \end{aligned} =+x2p1+a2p2x2p2++a1x+a0(xp+c)(xp1+a2p2xp2++ap+1x+ap)(xp1+bp2xp2++b1x+b0)

    其中 c = a p − 1 − 1 c=a_{p-1}-1 c=ap11 b j = a j − c a p + j b_j=a_j-ca_{p+j} bj=ajcap+j 是常数,且 x p x^p xp 已经预计算过了

  3. 于是我们把 2 p − 1 2p-1 2p1 次的首一多项式,分解为了两个 p − 1 p-1 p1 次的首一多项式,继续递归求值。乘法复杂度的递归公式为 N ( 2 p − 1 ) = 2 N ( p − 1 ) + 1 N(2p-1)=2N(p-1)+1 N(2p1)=2N(p1)+1,初值 N ( 1 ) = 0 N(1)=0 N(1)=0,因此 N ( n ) = ( n + 1 ) / 2 − 1 ≈ n / 2 N(n)=(n+1)/2-1 \approx n/2 N(n)=(n+1)/21n/2

对于任意的 n n n,我们将 n n n 二进制分解,于是可以把多项式拆分为若干长度为 2 i 2^i 2i分片,分别执行求值算法后,再乘以 x 2 , x 4 , x 8 , ⋯ , x 2 ⌊ log ⁡ n ⌋ x^2,x^4,x^8,\cdots,x^{2^{\lfloor\log n\rfloor}} x2,x4,x8,,x2logn 组装起来。这额外花费 log ⁡ n \log n logn 次乘法。

算法 B

定理:度数 n n n 的任意多项式,存在使用了 2 n 2\sqrt{n} 2n 次乘法的求值算法。

我们假设 n = k m − 1 n=km-1 n=km1(多项式长度 k m km km),

  1. 首先预计算 x 2 , x 3 , ⋯ , x k x^2,x^3,\cdots,x^k x2,x3,,xk,花费 k k k 次乘法

  2. 利用 Horner rule 的推广版本,将多项式写成如下形式:
    a k m − 1 x k m − 1 + a k m − 2 x k m − 2 + ⋯ + a 1 x + a 0 = ( ⋯ ( ( a k m − 1 x k − 1 + ⋯ + a k ( m − 1 ) ) x k + ( a k ( m − 1 ) − 1 x k − 1 + ⋯ + a k ( m − 2 ) ) ) x k + ⋯ ) x k + ( a k − 1 x k − 1 + ⋯ + a 1 x + a 0 ) \begin{aligned} &\,\, a_{km-1}x^{km-1}+a_{km-2}x^{km-2}+\cdots+a_1x+a_0\\ =&\,\, \Bigg(\cdots\Big((a_{km-1}x^{k-1}+\cdots+a_{k(m-1)})x^k\\ &\,\, +(a_{k(m-1)-1}x^{k-1}+\cdots+a_{k(m-2)})\Big)x^k + \cdots\Bigg)x^k\\ &\,\, +(a_{k-1}x^{k-1}+\cdots+a_1x+a_0) \end{aligned} =akm1xkm1+akm2xkm2++a1x+a0(((akm1xk1++ak(m1))xk+(ak(m1)1xk1++ak(m2)))xk+)xk+(ak1xk1++a1x+a0)

    因为 x 2 , ⋯ . x k − 1 , x k x^2,\cdots.x^{k-1},x^k x2,.xk1,xk 都预计算过,因此乘法开销为 m m m

  3. 总复杂度为 k + m k+m k+m,选取 k = n k=\sqrt{n} k=n 时最优化

算法 C

定理:度数 n n n 的任意多项式,存在使用了 2 n + O ( log ⁡ n ) \sqrt{2n}+O(\log n) 2n +O(logn) 次乘法的求值算法。

我们假设 n = k ⋅ ( 2 m − 1 ) n=k\cdot (2^m-1) n=k(2m1),同时多项式是首一的,

  1. 预计算 x 2 , x 3 , ⋯ , x k x^2,x^3,\cdots,x^k x2,x3,,xk,花费 k k k 次乘法

  2. 预计算 x 2 k , x 4 k , x 8 k , ⋯ , x k ⋅ 2 m − 1 x^{2k},x^{4k},x^{8k},\cdots,x^{k\cdot2^{m-1}} x2k,x4k,x8k,,xk2m1,花费 m m m 次乘法

  3. 给定某 k ( 2 p − 1 ) k(2p-1) k(2p1) 次的首一多项式,把它写成如下形式:
    x k ( 2 p − 1 ) + a k ( 2 p − 1 ) − 1 x k ( 2 p − 1 ) − 1 + ⋯ + a 1 x + a 0 = ( x k ( p − 1 ) + a k ( 2 p − 1 ) − 1 x k ( 2 p − 1 ) − 1 + ⋯ + a k ( p − 1 ) ) x k p + ( a k ( p − 1 ) − 1 x k p − 1 + ⋯ + a 1 x + a 0 ) \begin{aligned} &\,\, x^{k(2p-1)}+a_{k(2p-1)-1}x^{k(2p-1)-1}+\cdots+a_1x+a_0\\ =&\,\, (x^{k(p-1)}+a_{k(2p-1)-1}x^{k(2p-1)-1}+\cdots+a_{k(p-1)})x^{kp}\\ +&\,\, (a_{k(p-1)-1}x^{kp-1}+\cdots+a_1x+a_0) \end{aligned} =+xk(2p1)+ak(2p1)1xk(2p1)1++a1x+a0(xk(p1)+ak(2p1)1xk(2p1)1++ak(p1))xkp(ak(p1)1xkp1++a1x+a0)

    简记为 p ( x ) = q ( x ) ⋅ x k p + r ( x ) p(x)=q(x)\cdot x^{kp}+r(x) p(x)=q(x)xkp+r(x),其中 q ( x ) q(x) q(x)度数 k ( p − 1 ) k(p-1) k(p1) 的首一多项式 r ( x ) r(x) r(x) 是度数至多为 k p − 1 kp-1 kp1 的多项式,其中 x k p x^{kp} xkp 已经预计算过了

  4. 再计算带余除法(注意这与 x x x 的取值无关,可以预计算) r ( x ) − x k ( p − 1 ) = c ( x ) ⋅ q ( x ) + s ( x ) r(x)-x^{k(p-1)} = c(x) \cdot q(x)+s(x) r(x)xk(p1)=c(x)q(x)+s(x),其中 c ( x ) c(x) c(x) 度数至多为 k − 1 k-1 k1 s ( x ) s(x) s(x) 度数至多为 k ( p − 1 ) − 1 k(p-1)-1 k(p1)1,那么就写成了
    p ( x ) = ( x k p + c ( x ) ) ⋅ q ( x ) + ( x k ( p − 1 ) + s ( x ) ) p(x) = (x^{kp}+c(x)) \cdot q(x) + (x^{k(p-1)}+s(x)) p(x)=(xkp+c(x))q(x)+(xk(p1)+s(x))

    其中 x k ( p − 1 ) + s ( x ) x^{k(p-1)}+s(x) xk(p1)+s(x) 也是度数 k ( p − 1 ) k(p-1) k(p1) 的首一多项式

  5. 对于上述的两个 k ( p − 1 ) k(p-1) k(p1) 次多项式递归求值,乘法复杂度的递归公式为 N ( k ( 2 p − 1 ) ) = 2 N ( k ( p − 1 ) ) + 1 N(k(2p-1))=2N(k(p-1))+1 N(k(2p1))=2N(k(p1))+1,初值 N ( k ) = 0 N(k)=0 N(k)=0,因此 N ( n ) = ( n / k + 1 ) / 2 − 1 ≈ n / 2 k N(n)=(n/k+1)/2-1\approx n/2k N(n)=(n/k+1)/21n/2k,选取 k = n / 2 k=\sqrt{n/2} k=n/2 时最优化

对于任意的 n n n,类似于算法 A 进行分片,需要额外的 log ⁡ 2 n \log \sqrt{2n} log2n 次乘法。

基于插值的比较算法

有限域上的比较函数

一般地,我们使用布尔比较电路:
E Q ( a , b ) : = ∏ i = 1 l ( a i ⊕ b i ⊕ 1 ) L T ( a , b ) : = ∑ i = 1 l ( a i ⊕ 1 ) ⋅ b i ∏ j = i + 1 l ( a j ⊕ b j ⊕ 1 ) \begin{aligned} EQ(a,b) &:= \prod_{i=1}^l (a_i \oplus b_i \oplus 1)\\ LT(a,b) &:= \sum_{i=1}^l(a_i\oplus 1)\cdot b_i\prod_{j=i+1}^l (a_j \oplus b_j \oplus 1)\\ \end{aligned} EQ(a,b)LT(a,b):=i=1l(aibi1):=i=1l(ai1)bij=i+1l(ajbj1)

[IZ21] 提出了 G F ( q ) , q = p d GF(q),q=p^d GF(q),q=pd 上的比较电路。令 S ⊆ G F ( q ) S \subseteq GF(q) SGF(q) 是素域子集,其中多项式系数的取值范围是 [ B ] = { 0 , 1 , ⋯ , B } [B]=\{0,1,\cdots,B\} [B]={0,1,,B}。再令 S ′ = { 0 , 1 , ⋯ , B l − 1 } , l ≤ d S'=\{0,1,\cdots,B^{l}-1\}, l\le d S={0,1,,Bl1},ld 是整数的取值范围,我们将整数写作 B B B 进制形式 a = a l ⋯ a 2 a 1 a=a_l\cdots a_2a_1 a=ala2a1,其中 a i ∈ [ B ] a_i \in [B] ai[B] 是整数。我们定义如下双射:
ι : S ′ → S ∑ i = 1 l a i B i − 1 ↦ ∑ i = 1 l a i x i − 1 \begin{aligned} \iota: S' &\to S\\ \sum_{i=1}^{l} a_i B^{i-1} &\mapsto \sum_{i=1}^{l} a_i x^{i-1} \end{aligned} ι:Si=1laiBi1Si=1laixi1

根据这个映射,我们可以从 a , b ∈ S ′ a,b \in S' a,bS 的全序关系,诱导出 ι ( a ) , ι ( b ) ∈ S ⊆ G F ( q ) \iota(a),\iota(b) \in S \subseteq GF(q) ι(a),ι(b)SGF(q) 的全序关系。即:根据整数的大小关系,诱导出有限域元素的大小关系

给定任意两个有限域元素 X , Y ∈ S X,Y \in S X,YS,它们的大小关系构成了一个函数 L T S ( X , Y ) LT_S(X,Y) LTS(X,Y)。根据有限域插值定理,任意的多变元函数,都存在唯一的多变元多项式,使得两者是同一个函数性。

在这里插入图片描述

上述的 χ : α ↦ α q − 1 \chi: \alpha \mapsto \alpha^{q-1} χ:ααq1示性函数。乘法循环群的阶为 q − 1 q-1 q1,因此 χ ( α ) = 1 ⟺ α ≠ 0 \chi(\alpha)=1 \iff \alpha \neq 0 χ(α)=1α=0。实际上,有限域上的判等电路就是
E Q S ( X , Y ) : = 1 − χ ( X − Y ) EQ_S(X, Y) := 1-\chi(X-Y) EQS(X,Y):=1χ(XY)

根据字典序,可以进一步将整数表示为 “ S S S 进制”,从而实现任意大整数的比较运算。将整数写作 a = a l ⋯ a 2 a 1 a=a_l\cdots a_2a_1 a=ala2a1,其中 a i ∈ S a_i \in S aiS 是有限域元素。那么,
E Q S l ( a , b ) : = ∏ i = 1 l E Q S ( a i , b i ) L T S l ( a , b ) : = ∑ i = 1 l L T S ( a i , b i ) ∏ j = i + 1 l E Q S ( a j , b j ) \begin{aligned} EQ_{S^l}(a,b) &:= \prod_{i=1}^l EQ_S(a_i,b_i)\\ LT_{S^l}(a,b) &:= \sum_{i=1}^l LT_S(a_i,b_i) \prod_{j=i+1}^l EQ_S(a_j,b_j)\\ \end{aligned} EQSl(a,b)LTSl(a,b):=i=1lEQS(ai,bi):=i=1lLTS(ai,bi)j=i+1lEQS(aj,bj)

下面,我们看一看如何实现基本的比较函数 L T S ( X , Y ) LT_S(X,Y) LTS(X,Y)。简单起见,我们考虑在素域 S ⊆ G F ( p ) S\subseteq GF(p) SGF(p) 上的比较函数。对于扩域 G F ( p d ) GF(p^d) GF(pd),也是类似的思路。

双变元多项式插值

我们令 S = { 0 , 1 , ⋯ , p − 1 } S = \{0,1,\cdots,p-1\} S={0,1,,p1},那么根据整数间全序关系,可以诱导出如下的双变元函数

在这里插入图片描述

根据插值定理,我们可以得到一个双变元多项式
P ( X , Y ) : = ∑ a = 0 p − 2 E Q S ( X , a ) ∑ b = a + 1 p − 1 E Q S ( Y , b ) P(X,Y) := \sum_{a=0}^{p-2} EQ_S(X,a) \sum_{b=a+1}^{p-1} EQ_S(Y,b) P(X,Y):=a=0p2EQS(X,a)b=a+1p1EQS(Y,b)

[IZ21] 指出上述多项式可以化简为如下形式,它的总度数为 p p p

在这里插入图片描述

主要的计算开销是 ∑ i j a i j X i Y j = ∑ i ( ∑ j a i j X i ) Y j \sum_{ij} a_{ij} X^i Y^j = \sum_{i} \left(\sum_j a_{ij} X^i\right) Y^j ijaijXiYj=i(jaijXi)Yj,只需要 O ( p ) O(p) O(p) 次乘法,乘法深度为 O ( log ⁡ p ) O(\log p) O(logp)

单变元多项式插值

我们令 S = { 0 , 1 , ⋯ , ( p − 1 ) / 2 } S=\{0,1,\cdots,(p-1)/2\} S={0,1,,(p1)/2},并且将有限域分为两部分
G F ( p ) + = S , G F ( p ) − = { − ( p − 1 ) / 2 , ⋯ , − 2 , − 1 } GF(p)^+=S,\,\, GF(p)^-=\{-(p-1)/2,\cdots,-2,-1\} GF(p)+=S,GF(p)={(p1)/2,,2,1}

根据整数间大小关系,可以诱导出函数 X < Y ⟺ Z : = ( X − Y ) ∈ G F ( p ) − X<Y \iff Z:=(X-Y) \in GF(p)^- X<YZ:=(XY)GF(p)

根据插值定理,我们可以得到一个单变元多项式
Q ( X , Y ) : = ∑ a = − ( p − 1 ) / 2 − 1 E Q s ( Z , a ) Q(X,Y) := \sum_{a=-(p-1)/2}^{-1} EQ_s(Z,a) Q(X,Y):=a=(p1)/21EQs(Z,a)

[IZ21] 指出上述多项式可以化简为如下形式,

在这里插入图片描述

注意到 ∑ i c i ( X − Y ) i \sum_{i}c_i(X-Y)^i ici(XY)i 的幂次都是奇数,因此可以写作 Z g ( Z 2 ) Zg(Z^2) Zg(Z2) 的形式,其中 g ( x ) g(x) g(x) 是度数 ( p − 3 ) / 2 (p-3)/2 (p3)/2 的单变元多项式。根据 Horber 法则,我们用 Paterson-Stockmeyer algorithm 计算多项式求值,从而只需要 O ( p / 2 ) O(\sqrt{p/2}) O(p/2 ) 的乘法数量。

不过需要注意的是,单变元插值 S = { 0 , 1 , ⋯ , ( p − 1 ) / 2 } S=\{0,1,\cdots,(p-1)/2\} S={0,1,,(p1)/2} 比双变元插值 S = { 0 , 1 , ⋯ , p − 1 } S=\{0,1,\cdots,p-1\} S={0,1,,p1} 的范围小了一半,因此对于 l l l S S S 进制数,表示范围缩小为 1 / 2 l 1/2^l 1/2l,不得不延长 l l l l ⋅ log ⁡ p log ⁡ p − 1 \dfrac{l\cdot\log p}{\log p-1} logp1llogp 以保证具有相同的表示范围。

其他应用

实现最大值、最小值,
min ⁡ ( X , Y ) = X ⋅ L T ( X , Y ) + Y ⋅ ( 1 − L T ( X , Y ) ) = Y + ( X − Y ) ⋅ L T ( X , Y ) = Y + Z ⋅ Q ( X , Y ) = p + 1 2 ( X + Y ) + g ′ ( Z 2 ) , max ⁡ ( X , Y ) = Y ⋅ L T ( X , Y ) + X ⋅ ( 1 − L T ( X , Y ) ) = X + ( Y − X ) ⋅ L T ( X , Y ) = X − Z ⋅ Q ( X , Y ) = p + 1 2 ( X + Y ) − g ′ ( Z 2 ) \begin{aligned} \min(X,Y) &= X \cdot LT(X,Y) + Y \cdot (1-LT(X,Y))\\ &= Y + (X-Y) \cdot LT(X,Y)\\ &= Y + Z \cdot Q(X,Y)\\ &= \dfrac{p+1}{2}(X+Y) + g'(Z^2), \\ \max(X,Y) &= Y \cdot LT(X,Y) + X \cdot (1-LT(X,Y))\\ &= X + (Y-X) \cdot LT(X,Y)\\ &= X - Z \cdot Q(X,Y)\\ &= \dfrac{p+1}{2}(X+Y) - g'(Z^2)\\ \end{aligned} min(X,Y)max(X,Y)=XLT(X,Y)+Y(1LT(X,Y))=Y+(XY)LT(X,Y)=Y+ZQ(X,Y)=2p+1(X+Y)+g(Z2),=YLT(X,Y)+X(1LT(X,Y))=X+(YX)LT(X,Y)=XZQ(X,Y)=2p+1(X+Y)g(Z2)

其中 g ′ ( x ) g'(x) g(x) 是度数 ( p − 1 ) / 2 (p-1)/2 (p1)/2 的单变元多项式,使用 [PS73] 仅需 O ( p / 2 ) O(\sqrt{p/2}) O(p/2 ) 次乘法。

实现 ReLU 函数,
R e L U ( X ) : = max ⁡ ( X , 0 ) = p + 1 2 X − g ′ ( X 2 ) ReLU(X) := \max(X,0) = \dfrac{p+1}{2}X - g'(X^2)\\ ReLU(X):=max(X,0)=2p+1Xg(X2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53660.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新PHP短网址生成系统/短链接生成系统/URL缩短器系统源码

全新PHP短网址系统URL缩短器平台&#xff0c;它使您可以轻松地缩短链接&#xff0c;根据受众群体的位置或平台来定位受众&#xff0c;并为缩短的链接提供分析见解。 系统使用了Laravel框架编写&#xff0c;前后台双语言使用&#xff0c;可以设置多域名&#xff0c;还可以开设套…

阻止 form 表单的默认提交

目录 表单提交的3种形式1&#xff0c;默认提交2&#xff0c;submit 提交3&#xff0c;button 提交 阻止提交方法1—— return false方法2 —— 阻止 submit 的默认行为方法3 —— 针对 button 的处理 表单提交的3种形式 MDN - form 提交表单时&#xff0c;未指定 form.action …

Linux操作系统--常用指令(用户管理操作类)

用户的管理需要使用超级管理员(root)来进行操作 (1).useradd添加新用户 功能:给当前的操作系统添加新的用户 语法: useradd 用户名 (2).passwd设置用户新密码 功能:给当前的用户设置密码 语法: passwd用户名 (3).i

js的使用之时间如何定义,窗口加载事件

1.时间如何定义 1.1 date的其他的属性 带出星期几的写法 var arr [星期日,星期一,星期二,星期三,星期四,星期五,星期六,星期天] var day date.getDay(); console.log(arr[day]); 1.2 日期的格式化 1.3 时分秒的写法 固定写法&#xff1a;如果想要写成00:00:00这种形式&am…

Flutter对象状态动态监听Watcher

场景&#xff1a;当一个表单需要在表单全部或者特定项赋值后才会让提交按钮可点击。 1.普通实现方式&#xff1a; ///场景&#xff1a;检查[test11][test12][test13]均不为空时做一些事情&#xff0c;例如提交按钮变成可点击String? test11;String? test12;int? test13;///当…

GNU-gcc编译选项-1

include目录 -I &#xff0c;比如: -I. -I ./Platform/include -I ./Platform/include/prototypes -I ./tpm/include -I ./tpm/include/prototypes -I ./Simulator/include -I ./Simulator/include/prototypes 编译选项 在GCC编译器中&#xff0c;-D是一个编译选项&…

Java“牵手”天猫商品评论API接口数据,天猫API接口申请指南

天猫商城是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取淘宝商品详情页面评价内容数据&#xff0c;您可以通过开放平台的接口或者直接访问淘宝商城的网页来获取商品详情信息内的评论数据。以下是两种常用方法…

高效实用小工具之Everything

一&#xff0c;简介 有时候我们电脑文件较多时&#xff0c;想快速找到某个文件不是一件容易的事情&#xff0c;实用windows自带的搜索太耗时&#xff0c;效率不高。今天推荐一个用来搜索电脑文件的小工具——Everything&#xff0c;本文将介绍如何安装以及使用everything&…

XXL-JOB

XXL-JOB是一个分布式的任务调度平台。 目的&#xff1a;为了自动完成特定的任务&#xff0c;在约定的特定时间去执行任务的过程。 原因&#xff1a;在spring中有scheduled&#xff0c;放到业务层代码上面也可以。但是其无法做到高可用、防止重复执行&#xff0c;单机处理极限…

uniapp使用uni.chooseLocation()打开地图选择位置

使用uni.chooseLocation()打开地址选择位置&#xff1a; 在Uniapp源码视图进行设置 添加这个属性&#xff1a;"requiredPrivateInfos":["chooseLocation"] ​ </template><view class"location_box"><view class"locatio…

4.12 TCP 连接,一端断电和进程崩溃有什么区别?

目录 TCP keepalive TCP 的保活机制 主机崩溃 进程崩溃 有数据传输的场景 客户端主机宕机&#xff0c;又迅速重启 客户端主机宕机&#xff0c;一直没有重启 TCP连接服务器宕机和进程退出情况总结 TCP keepalive TCP 的保活机制 TCP 保活机制需要通过 socket 接口设置 S…

Mybatis-动态sql和分页

目录 一.什么是Mybatis动态分页 二.mybatis中的动态SQL 在BookMaaper.xml中写sql BookMapper BookBiz接口类 BookBizImpl实现接口类 demo测试类 ​编辑 测试结果 三.mybatis中的模糊查询 mybatis中的#与$有是什么区别 在BookMapper.xml里面建立三个模糊查询 ​编辑 …

用Cmake build OpenCV后,在VS中查看OpenCV源码的方法(环境VS2022+openCV4.8.0) Part II

用Cmake build OpenCV后&#xff0c;在VS中查看OpenCV源码的方法 Part II 用Cmake build OpenCV后&#xff0c;在VS中查看OpenCV源码的方法&#xff08;环境VS2022openCV4.8.0&#xff09; Part I_松下J27的博客-CSDN博客 在上一篇文章中&#xff0c;我用cmake成功的生成了ope…

无涯教程-分类算法 - 逻辑回归

逻辑回归是一种监督学习分类算法&#xff0c;用于预测目标变量的概率&#xff0c;目标或因变量的性质是二分法&#xff0c;这意味着将只有两种可能的类。 简而言之&#xff0c;因变量本质上是二进制的&#xff0c;其数据编码为1(代表成功/是)或0(代表失败/否)。 在数学上&…

【网络】IP网络层和数据链路层

IP协议详解 1.概念 1.1 四层模型 应用层&#xff1a;解决如何传输数据&#xff08;依照什么格式/协议处理数据&#xff09;的问题传输层&#xff1a;解决可靠性问题网络层&#xff1a;数据往哪里传&#xff0c;怎么找到目标主机数据链路层&#xff08;物理层&#xff09;&…

ubuntu下自启动设置,为了开机自启动launch文件

1、书写sh脚本文件 每隔5秒钟启动一个launch文件&#xff0c;也可以直接在一个launch文件中启动多个&#xff0c;这里为了确保启动顺利&#xff0c;添加了一些延时 #! /bin/bash ### BEGIN INIT sleep 5 gnome-terminal -- bash -c "source /opt/ros/melodic/setup.bash…

java八股文面试[数据结构]——ConcurrentHashMap原理

HashMap不是线程安全&#xff1a; 在并发环境下&#xff0c;可能会形成环状链表&#xff08;扩容时可能造成&#xff0c;具体原因自行百度google或查看源码分析&#xff09;&#xff0c;导致get操作时&#xff0c;cpu空转&#xff0c;所以&#xff0c;在并发环境中使用HashMap是…

认识Mybatis的关联关系映射,灵活关联表对象之间的关系

目录 一、概述 ( 1 ) 介绍 ( 2 ) 关联关系映射 ( 3 ) 关联讲述 二、一对一关联映射 2.1 数据库创建 2.2 配置文件 2.3 代码生成 2.4 编写测试 三、一对多关联映射 四 、多对多关联映射 给我们带来的收获 一、概述 ( 1 ) 介绍 关联关系映射是指在数据库中&…

【C++杂货铺】探索vector的底层实现

文章目录 一、STL1.1 什么是STL?1.2 STL的版本1.3 STL的六大组件 二、vector的介绍及使用2.1 vector的介绍2.2 vector的使用2.2.1 vector的定义2.2.2 vector iterator2.2.3 vector空间增长问题2.2.4 vector增删查改 2.3 vector\<char\> 可以替代 string 嘛&#xff1f; …

MyBatis与Spring的集成整合加优化分页功能

目录 一.为什么要将MyBatis和Spring整合&#xff1f;&#xff1f;&#xff1f; 二.配置环境 2.1 pom文件 2.2 xml文件 三.演示举例 四.Aop整合pageHelper 分页插件 今天的分享就到这啦&#xff01;&#xff01;&#xff01; 一.为什么要将MyBatis和Spring整合&#xff1f…