显卡、显卡驱动、CUDA、CUDA Toolkit、cuDNN 梳理

显卡、显卡驱动、CUDA、CUDA Toolkit、cuDNN 梳理

转自:https://www.cnblogs.com/marsggbo/p/11838823.html#nvccnvidia-smi

GPU型号含义

  • 显卡: 简单理解这个就是我们前面说的GPU,尤其指NVIDIA公司生产的GPU系列,因为后面介绍的cuda,cudnn都是NVIDIA公司针对自身的GPU独家设计的。
  • 显卡驱动:很明显就是字面意思,通常指NVIDIA Driver,其实它就是一个驱动软件,而前面的显卡就是硬件。
  • gpu架构:Tesla、Fermi、Kepler、Maxwell、Pascal
  • 芯片型号:GT200、GK210、GM104、GF104等
  • 显卡系列:GeForce、Quadro、Tesla
  • GeForce显卡型号:G/GS、GT、GTS、GTX

gpu架构指的是硬件的设计方式,例如流处理器簇中有多少个core、是否有L1 or L2缓存、是否有双精度计算单元等等。每一代的架构是一种思想,如何去更好完成并行的思想

芯片就是对上述gpu架构思想的实现,例如芯片型号GT200中第二个字母代表是哪一代架构,有时会有100和200代的芯片,它们基本设计思路是跟这一代的架构一致,只是在细节上做了一些改变,例如GK210比GK110的寄存器就多一倍。有时候一张显卡里面可能有两张芯片,Tesla k80用了两块GK210芯片。这里第一代的gpu架构的命名也是Tesla,但现在基本已经没有这种设计的卡了,下文如果提到了会用Tesla架构和Tesla系列来进行区分。

而显卡系列在本质上并没有什么区别,只是NVIDIA希望区分成三种选择,GeFore用于家庭娱乐,Quadro用于工作站,而Tesla系列用于服务器。Tesla的k型号卡为了高性能科学计算而设计,比较突出的优点是双精度浮点运算能力高并且支持ECC内存,但是双精度能力好在深度学习训练上并没有什么卵用,所以Tesla系列又推出了M型号来做专门的训练深度学习网络的显卡。需要注意的是Tesla系列没有显示输出接口,它专注于数据计算而不是图形显示。

最后一个GeForce的显卡型号是不同的硬件定制,越往后性能越好,时钟频率越高显存越大,即G/GS<GT<GTS<GTX。

CUDA

CUDA英文全称是Compute Unified Device Architecture,是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。按照Nvidia官方的说法是,CUDA是一个并行计算平台和编程模型,能够使得使用GPU进行通用计算变得简单和优雅

在这里插入图片描述

cuDNN

cuDNN其实就是一个专门为深度学习计算设计的软件库,里面提供了很多专门的计算函数,如卷积等。从上图也可以看到,还有很多其他的软件库和中间件,包括实现c++ STL的thrust、实现gpu版本blas的cublas、实现快速傅里叶变换的cuFFT、实现稀疏矩阵运算操作的cuSparse以及实现深度学习网络加速的cuDNN等等。

CUDA Toolkit

CUDA Toolkit由以下组件组成:

  • Compiler: CUDA-C和CUDA-C++编译器NVCC位于bin/目录中。它建立在NVVM优化器之上,而NVVM优化器本身构建在LLVM编译器基础结构之上。希望开发人员可以使用nvm/目录下的Compiler SDK来直接针对NVVM进行开发。
  • Tools: 提供一些像profiler,debuggers等工具,这些工具可以从bin/目录中获取
  • Libraries: 下面列出的部分科学库和实用程序库可以在lib/目录中使用(Windows上的DLL位于bin/中),它们的接口在include/目录中可获取。
    • cudart: CUDA Runtime
    • cudadevrt: CUDA device runtime
    • cupti: CUDA profiling tools interface
    • nvml: NVIDIA management library
    • nvrtc: CUDA runtime compilation
    • cublas: BLAS (Basic Linear Algebra Subprograms,基础线性代数程序集)
    • cublas_device: BLAS kernel interface
  • CUDA Samples: 演示如何使用各种CUDA和library API的代码示例。可在Linux和Mac上的samples/目录中获得,Windows上的路径是C:\ProgramData\NVIDIA Corporation\CUDA Samples中。在Linux和Mac上,samples/目录是只读的,如果要对它们进行修改,则必须将这些示例复制到另一个位置。
  • CUDA Driver: 运行CUDA应用程序需要系统至少有一个具有CUDA功能的GPU与CUDA工具包兼容的驱动程序。每个版本的CUDA工具包都对应一个最低版本的CUDA Driver,也就是说如果你安装的CUDA Driver版本比官方推荐的还低,那么很可能会无法正常运行。CUDA Driver是向后兼容的,这意味着根据CUDA的特定版本编译的应用程序将继续在后续发布的Driver上也能继续工作。通常为了方便,在安装CUDA Toolkit的时候会默认安装CUDA Driver。在开发阶段可以选择默认安装Driver,但是对于像Tesla GPU这样的商用情况时,建议在官方安装最新版本的Driver。

nvcc

这个在前面已经介绍了,nvcc其实就是CUDA的编译器,可以从CUDA Toolkit的/bin目录中获取,类似于gcc就是C语言的编译器。由于程序是要经过编译器编程成可执行的二进制文件,而cuda程序有两种代码,一种是运行在cpu上的host代码,一种是运行在gpu上的device代码,所以nvcc编译器要保证两部分代码能够编译成二进制文件在不同的机器上执行。nvcc涉及到的文件后缀及相关意义如下表:

文件后缀意义
.cucuda源文件,包括host和device代码
.cup经过预处理的cuda源文件,编译选项–preprocess/-E
.cc源文件
.cc/.cxx/.cppc++源文件
.gpugpu中间文件,编译选项–gpu
.ptx类似汇编代码,编译选项–ptx
.o/.obj目标文件,编译选项–compile/-c
.a/.lib库文件,编译选项–lib/-lib
.res资源文件
.so共享目标文件,编译选项–shared/-shared
.cubincuda的二进制文件,编译选项-cubin

nvidia-smi

nvidia-smi全程是NVIDIA System Management Interface ,它是一个基于前面介绍过的NVIDIA Management Library(NVML)构建的命令行实用工具,旨在帮助管理和监控NVIDIA GPU设备。

nvcc与nvidia-smi显示CUDA版本不同

在我们实验室的服务器上nvcc --version显示的结果如下:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Tue_Jun_12_23:07:04_CDT_2018
Cuda compilation tools, release 9.2, V9.2.148

nvidia-smi显示结果如下:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.104      Driver Version: 410.104      CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-PCIE...  On   | 00000000:01:00.0 Off |                  Off |
| N/A   28C    P0    26W / 250W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla P100-PCIE...  On   | 00000000:02:00.0 Off |                  Off |
| N/A   24C    P0    30W / 250W |      0MiB / 16280MiB |      0%      Default |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

可以看到nvcc的CUDA 版本是9.2,而nvidia-smi的CUDA版本是10.0。很奇怪的是有时候绝大多数情况代码也能整成跑起来,stackoverflow上的一个解释如下:

CUDA有两个主要的API:runtime(运行时) APIdriver API。这两个API都有对应的CUDA版本(如9.2和10.0等)。

  • 用于支持driver API的必要文件(如libcuda.so)是由GPU driver installer安装的。nvidia-smi就属于这一类API。
  • 用于支持runtime API的必要文件(如libcudart.so以及nvcc)是由CUDA Toolkit installer安装的。(CUDA Toolkit Installer有时可能会集成了GPU driver Installer)。nvcc是与CUDA Toolkit一起安装的CUDA compiler-driver tool,它只知道它自身构建时的CUDA runtime版本。它不知道安装了什么版本的GPU driver,甚至不知道是否安装了GPU driver。

综上,如果driver API和runtime API的CUDA版本不一致可能是因为你使用的是单独的GPU driver installer,而不是CUDA Toolkit installer里的GPU driver installer。

runtime 与 driver API 的区别

下图很清楚的展示前面提到的各种概念之间的关系,其中runtime和driver API在很多情况非常相似,也就是说用起来的效果是等价的,但是你不能混合使用这两个API,因为二者是互斥的。也就是说在开发过程中,你只能选择其中一种API。简单理解二者的区别就是:runtime是更高级的封装,开发人员用起来更方便,而driver API更接近底层,速度可能会更快。

在这里插入图片描述

两种API详细的区别如下:

  • 复杂性

    • runtime API通过提供隐式初始化、上下文管理和模块管理来简化设备代码管理。这使得代码更简单,但也缺乏驱动程序API所具有的控制级别。
    • 相比之下,driver API提供了更细粒度的控制,特别是在上下文和模块加载方面。实现内核启动要复杂得多,因为执行配置和内核参数必须用显式函数调用指定。
  • 控制

    • 对于runtime API,其在运行时,所有内核都在初始化期间自动加载,并在程序运行期间保持加载状态。
    • 而使用driver API,可以只加载当前需要的模块,甚至动态地重新加载模块。driver API也是语言独立的,因为它只处理cubin对象。
  • 上下文管理

    上下文管理可以通过driver API完成,但是在runtime API中不公开。相反,runtime API自己决定为线程使用哪个上下文:

    • 如果一个上下文通过driver API成为调用线程的当前上下文,runtime将使用它,
    • 如果没有这样的上下文,它将使用“主上下文(primary context)”。

主上下文会根据需要创建,每个设备每个进程一个上下文,并进行引用计数,然后在没有更多的引用时销毁它们。在一个进程中,所有runtime API的用户都将共享主上下文,除非上下文已成为每个线程的当前上下文。runtime使用的上下文,即当前上下文或主上下文,可以用cudaDeviceSynchronize()同步,也可以用cudaDeviceReset()销毁。
但是,将runtime API与主上下文一起使用会有tradeoff。例如,对于那些需要给较大的软件包写插件的开发者来说者会带来不少麻烦,因为如果所有的插件都在同一个进程中运行,它们将共享一个上下文,但可能无法相互通信。也就是说,如果其中一个在完成所有CUDA工作后调用cudaDeviceReset(),其他插件将失败,因为它们使用的上下文在它们不知情的情况下被破坏。为了避免这个问题,CUDA clients可以使用driver API来创建和设置当前上下文,然后使用runtime API来处理它。但是,上下文可能会消耗大量的资源,比如设备内存、额外的主机线程和设备上上下文切换的性能成本。当将driver API与基于runtime API(如cuBLAS或cuFFT)构建的库一起使用时,这种runtime-driver上下文共享非常重要。

Linux中PATH、LIBRARY_PATH、LD_LIBRARY_PATH 的区别

PATH

PATH是可执行文件路径,是三个中我们最常接触到的,因为我们命令行中的每句能运行的命令,如ls、top、ps等,都是系统通过PATH找到了这个命令执行文件的所在位置,再run这个命令(可执行文件)。 比如说,在用户的目录~/mycode/下有一个bin文件夹,里面放了有可执行的二进制文件、shell脚本等。如果想要在任意目录下都能运行上述bin文件夹的可执行文件,那么只需要把这个bin的路径添加到PATH即可,方法如下:

# vim ~/.bashrc
PATH=$PATH:~/mycode/bin

LIBRARY_PATH和LD_LIBRARY_PATH

这两个路径可以放在一起讨论,

  • LIBRARY_PATH程序编译期间查找动态链接库时指定查找共享库的路径
  • LD_LIBRARY_PATH程序加载运行期间查找动态链接库时指定除了系统默认路径之外的其他路径

两者的共同点是库,库是这两个路径和PATH路径的区别,PATH是可执行文件。

两者的差异点是使用时间不一样。一个是编译期,对应的是开发阶段,如gcc编译;一个是加载运行期,对应的是程序已交付的使用阶段。

配置方法也是类似:

export  LD_LIBRARY_PATH=LD_LIBRARY_PATH:XXXX

多版本CUDA切换

1 CUDA下载与安装方式的选择

到 CUDA Toolkit Download 下载所需版本,以cuda_9.0.176_384.81_linux.run为例:

在这里插入图片描述

建议选择使用 .run 文件安装,因为使用 .deb可能会将已经安装的较新的显卡驱动替换。

2 安装

进入到放置 cuda_9.0.176_384.81_linux.run 的目录:

sudo chmod +x cuda_9.0.176_384.81_linux.run # 为 cuda_9.0.176_384.81_linux.run 添加可执行权限
./cuda_9.0.176_384.81_linux.run # 安装 cuda_9.0.176_384.81_linux.run

在安装过程中截取其中比较重要的几个选择:

Do you accept the previously read EULA?
accept/decline/quit: acceptInstall NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
(y)es/(n)o/(q)uit: n # 如果在这之前已经安装好更高版本的显卡驱动就不需要再重复安装,如果需要重复安装就选择 yes,此外还需要关闭图形界面。Install the CUDA 9.0 Toolkit?
(y)es/(n)o/(q)uit: yEnter Toolkit Location[ default is /usr/local/cuda-9.0 ]: # 一般选择默认即可,也可以选择安装在其他目录,在需要用的时候指向该目录或者使用软连接 link 到 /usr/local/cuda。/usr/local/cuda-9.0 is not writable.
Do you wish to run the installation with 'sudo'?
(y)es/(n)o: yPlease enter your password: 
Do you want to install a symbolic link at /usr/local/cuda? # 是否将安装目录通过软连接的方式 link 到 /usr/local/cuda,yes or no 都可以,取决于你是否使用 /usr/local/cuda 为默认的 cuda 目录。
(y)es/(n)o/(q)uit: nInstall the CUDA 9.0 Samples?
(y)es/(n)o/(q)uit: n

前面选择的一些汇总:

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-9.0
Samples:  Not SelectedPlease make sure that-   PATH includes /usr/local/cuda-9.0/bin-   LD_LIBRARY_PATH includes /usr/local/cuda-9.0/lib64, or, add /usr/local/cuda-9.0/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.0/binPlease see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.0/doc/pdf for detailed information on setting up CUDA.***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:sudo <CudaInstaller>.run -silent -driver

安装完成后可在/usr/local目录下看到:

cuda-8.0 # 笔者之前安装的cuda-8.0
cuda-9.0 # 刚刚安装的cuda-9.0
cuda # cuda-8.0 的软连接

3 多个CUDA版本间的切换

~/.bashrc 或 ~/.zshrc 下与cuda相关的路径都改为 /usr/local/cuda/ 而不使用 /usr/local/cuda-8.0//usr/local/cuda-9.0/

#在切换cuda版本时
rm -rf /usr/local/cuda#删除之前创建的软链接
sudo ln -s /usr/local/cuda-8.0/ /usr/local/cuda/
nvcc --version #查看当前 cuda 版本nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Mon_Jan_23_12:24:11_CST_2017
Cuda compilation tools, release 8.0, V8.0.62#cuda8.0 切换到 cuda9.0 
rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-9.0/ /usr/local/cuda/
nvcc --version

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/532825.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VS Code的Error: Running the contributed command: ‘_workbench.downloadResource‘ failed解决

VS Code的Error: Running the contributed command: _workbench.downloadResource failed解决 转自&#xff1a;https://blog.csdn.net/ibless/article/details/118610776 1 问题描述 此前&#xff0c;本人参考网上教程在VS Code中配置了“Remote SSH”插件&#xff08;比如这…

Oracle闪回报错,oracle 闪回区满了,ORA-19815

oracle 闪回区满了&#xff0c;查看日志报错&#xff1a;ORA-19815&#xff0c;命令行输入&#xff1a;sqlplus / as sysdbastartup mount //如果你的数据库出现了无法连接的情况时&#xff0c;可以加上这句select file_type, percent_space_used as used,percent_space_rec…

[2021-ICCV] MUSIQ Multi-scale Image Quality Transformer 论文简析

[2021-ICCV] MUSIQ: Multi-scale Image Quality Transformer 论文简析 论文&#xff1a;https://arxiv.org/abs/2108.05997 代码&#xff1a;https://github.com/google-research/google-research/tree/master/musiq 概述 当前SOTA的IQA&#xff08;图像质量评估&#xff0…

安装oracle不动了,windows2008安装ORACLE到2%不动的问题 | 信春哥,系统稳,闭眼上线不回滚!...

最近又有网友遇到在windows2008服务器上安装ORACLE软件时到2%就卡住不动的问题&#xff0c;下面是该网友的描述&#xff1a;oralce 11g r2 windows server 2008 R2安装到最后一步复制数据文件时卡到2% 不走了内存一直飙升求解决这个问题前段时间也有人遇到过&#xff0c;但是他…

手把手教你入门Git --- Git使用指南(Linux)

手把手教你入门Git — Git使用指南&#xff08;Linux&#xff09; 系统&#xff1a;ubuntu 18.04 LTS 本文所有git命令操作实验具有连续性&#xff0c;git小白完全可以从头到尾跟着本文所有给出的命令走一遍&#xff0c;就会对git有一个初步的了解&#xff0c;应当能做到会用并…

php数据关系图,如何利用navicat查看数据表的ER关系图

文章背景&#xff1a;(相关推荐&#xff1a;navicat)由于工作需要&#xff0c;现在要分析一个数据库&#xff0c;然后查看各个表之间的关系&#xff0c;所以需要查看表与表之间的关系图&#xff0c;专业术语叫做ER关系图。默认情况下&#xff0c;Navicat显示的界面是这样的&…

Linux中g++与gcc的区别

转自&#xff1a;https://blog.csdn.net/bit_clearoff/article/details/53965514 Windows中我们常用vs来编译编写好的C和C代码&#xff1b;vs把编辑器&#xff0c;编译器和调试器等工具都集成在这一款工具中&#xff0c;在Linux下我们能用什么工具来编译所编写好的代码呢&#…

从C源代码到可执行文件的四个过程:预处理、编译、汇编、链接

从C源代码到可执行文件的四个过程&#xff1a;预处理、编译、汇编、链接 总览 我们将在Linux操作系统中&#xff0c;以C语言的Hello World程序为例&#xff0c;用gcc编译器分步执行这四个步骤。 我们有再熟悉不过的HelloWorld程序&#xff0c;hello.c&#xff1a; #include …

linux内核中cent文件夹,Centos 中如何快速定制二进制的内核 RPM 包

1、rpm 制作前的环境准备&#xff1a;yum install -y ncurses-devel qt-devel rpm-build redhat-rpm-config asciidoc hmaccalc perl-ExtUtils-Embed xmlto audit-libs-devel binutils-devel elfutils-devel elfutils-libelf-devel newt-devel python-devel zlib-devel bc2、准…

TabError- inconsistent use of tabs and spaces in indentation 查验及解决方法

TabError: inconsistent use of tabs and spaces in indentation 查验及解决方法 报错代码 def eccv16(pretrainedTrue):model ECCVGenerator()if(pretrained):import torch.utils.model_zoo as model_zoomodel.load_state_dict(torch.load(/home/ps/.cache/torch/hub/check…

linux用xshell编辑文件,Linux远程管理器xshell和xftp使用教程

Xshell 是一个强大的安全终端模拟软件&#xff0c;它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议。Xftp 是一个基于 MS windows 平台的功能强大的SFTP、FTP 文件传输软件。安装完毕后打开xshell设置网站帐号信息设置主机信息设置服务器帐号设置字符集编码设置好了…

FLOPs、FLOPS、Params的含义及PyTorch中的计算方法

FLOPs、FLOPS、Params的含义及PyTorch中的计算方法 含义解释 FLOPS&#xff1a;注意全大写&#xff0c;是floating point operations per second的缩写&#xff08;这里的大S表示second秒&#xff09;&#xff0c;表示每秒浮点运算次数&#xff0c;理解为计算速度。是一个衡量…

科普 | 单精度、双精度、多精度和混合精度计算的区别是什么?

科普 | 单精度、双精度、多精度和混合精度计算的区别是什么? 转自&#xff1a;https://zhuanlan.zhihu.com/p/93812784 我们提到圆周率 π 的时候&#xff0c;它有很多种表达方式&#xff0c;既可以用数学常数3.14159表示&#xff0c;也可以用一长串1和0的二进制长串表示。 …

linux设备驱动之串口移植,Linux设备驱动之UART驱动结构

一、对于串口驱动Linux系统中UART驱动属于终端设备驱动&#xff0c;应该说是实现串口驱动和终端驱动来实现串口终端设备的驱动。要了解串口终端的驱动在Linux系统的结构就先要了解终端设备驱动在Linux系统中的结构体系&#xff0c;一方面自己了解的不够&#xff0c;另一发面关于…

NVIDIA英伟达的Multi-GPU多卡通信框架NCCL

NVIDIA英伟达的Multi-GPU多卡通信框架NCCL 笔者注&#xff1a;NCCL 开源项目地址&#xff1a;https://github.com/NVIDIA/nccl 转自&#xff1a;https://www.zhihu.com/question/63219175/answer/206697974 NCCL是Nvidia Collective multi-GPU Communication Library的简称&…

C语言n个坐标点间的最大距离,c语言已知两点坐标,求另一点到穿过这两点的直线最短距离。...

c语言已知两点坐标&#xff0c;求另一点到穿过这两点的直线最短距离。以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;c语言已知两点坐标&#xff0c;求另一点到穿过这两点的直线最短距离。#…

[分布式训练] 单机多卡的正确打开方式:理论基础

[分布式训练] 单机多卡的正确打开方式&#xff1a;理论基础 转自&#xff1a;https://fyubang.com/2019/07/08/distributed-training/ 瓦砾由于最近bert-large用的比较多&#xff0c;踩了很多分布式训练的坑&#xff0c;加上在TensorFlow和PyTorch之间更换&#xff0c;算是熟…

s3c2416开发板 linux,S3C2416移植内核Linux3.1的wm9713声卡过程

移植内核的声卡驱动。原因没有声卡驱动&#xff0c;WM9713声卡驱动移植(原来的内核有UDA1341声卡驱动&#xff0c;我们再次基础上直接修改)1、直接复制内核得到三个文件:s3c2416_wm9713.c , wm9713.c , s3c2416_ac97.c.linux-3.1\sound\soc\codecs\Wm9713.c---->wm9713.c;li…

c语言六位抢答器课程设计,51单片机八路抢答器课程设计

;说明&#xff1a;本人的这个设计改进后解决了前一个版本中1号抢答优先的问题&#xff0c;并增加了锦囊的设置&#xff0c;当参赛选手在回答问题时要求使用锦囊&#xff0c;则主持人按下抢答开始键&#xff0c;计时重新开始。;八路抢答器电路请看下图是用ps仿真的&#xff0c;已…

ELF文件详解—初步认识

ELF文件详解—初步认识 转自&#xff1a;https://blog.csdn.net/daide2012/article/details/73065204 一、 引言 在讲解ELF文件格式之前&#xff0c;我们来回顾一下&#xff0c;一个用C语言编写的高级语言程序是从编写到打包、再到编译执行的基本过程&#xff0c;我们知道在C…