激活函数总结(十九):激活函数补充(ISRU、ISRLU)

激活函数总结(十九):激活函数补充

  • 1 引言
  • 2 激活函数
    • 2.1 Inverse Square Root Unit (ISRU)激活函数
    • 2.2 Inverse Square Root Linear Unit (ISRLU)激活函数
  • 3. 总结

1 引言

在前面的文章中已经介绍了介绍了一系列激活函数 (SigmoidTanhReLULeaky ReLUPReLUSwishELUSELUGELUSoftmaxSoftplusMishMaxoutHardSigmoidHardTanhHardswishHardShrinkSoftShrinkTanhShrinkRReLUCELUReLU6GLUSwiGLUGTUBilinearReGLUGEGLUSoftminSoftmax2dLogsoftmaxIdentityLogSigmoidBent IdentityAbsoluteBipolarBipolar SigmoidSinusoidCosineArcsinhArccoshArctanhLeCun TanhTanhExpGaussianGCUASUSQUNCUDSUSSUSReLUBReLUPELUPhishRBFSQ-RBF)。在这篇文章中,会接着上文提到的众多激活函数继续进行介绍,给大家带来更多不常见的激活函数的介绍。这里放一张激活函数的机理图:
在这里插入图片描述

2 激活函数

2.1 Inverse Square Root Unit (ISRU)激活函数

Inverse Square Root Unit(ISRU)是一种非线性激活函数,它在神经网络中用于引入非线性变换。其数学表达式和数学图像分别如下所示:
I S R U ( x ) = x 1 + a x 2 ISRU(x) = \frac{x}{\sqrt{1+ax^2}} ISRU(x)=1+ax2 x在这里插入图片描述
优点:

  • 非线性性质: ISRU 激活函数引入了非线性性质,有助于神经网络模型捕捉数据中的复杂模式。
  • 平滑性: ISRU 在输入值的范围内具有连续和平滑的性质,这对于梯度计算和反向传播有益。
  • 参数调整: 通过调整参数 α,您可以自由地控制激活函数的形状,使其适应不同的数据分布和任务需求。
  • 避免梯度消失: 相对于一些激活函数,如 Sigmoid 和 Tanh,ISRU 在输入较大的范围内可以避免梯度消失问题。

缺点:

  • 计算复杂性: ISRU 涉及平方根的计算,这可能在计算上相对于一些简单的激活函数(如 ReLU)而言较为复杂。
  • 参数调整: 调整参数 α 需要更多的实验调优,以找到最佳参数设置。
  • 可解释性: ISRU 不是一个广泛使用的激活函数,因此可能需要更多的背景知识来解释其作用和效果。

该激活函数在当前环境下很少使用。。。。

2.2 Inverse Square Root Linear Unit (ISRLU)激活函数

Inverse Square Root Linear Unit(ISRLU)是一种非线性激活函数,它是 Rectified Linear Unit(ReLU)的一种扩展。ISRLU 激活函数引入了一个可学习的参数,使得在输入为时,激活函数的输出与输入之间存在非线性关系。其数学表达式和数学图像分别如下所示:
I S R L U ( x ) = { x 1 + a x 2 , if  x < 0 x , if  x ≥ 0 ISRLU(x) = \begin{cases} \frac{x}{\sqrt{1+ax^2}}, & \text{if } x < 0 \\ x, & \text{if } x \geq 0 \\ \end{cases} ISRLU(x)={1+ax2 x,x,if x<0if x0在这里插入图片描述
优点:

  • 非线性性质: ISRLU 激活函数在输入为时引入了非线性性质,有助于神经网络模型更好地捕捉数据中的复杂模式。
  • 平滑性: ISRLU 在输入为负时是平滑的,这对于梯度计算和反向传播有益
  • 自适应性: 参数 ( α \alpha α) 可以通过训练适应不同的数据分布,使 ISRLU 的负半部分适应数据的特性。
  • 避免梯度消失: 相对于一些激活函数,如 Sigmoid 和 Tanh,ISRLU 在输入较大的范围内可以避免梯度消失问题。

缺点:

  • 计算复杂性: ISRLU 涉及平方根的计算,这可能在计算上相对于一些简单的激活函数(如 ReLU)而言较为复杂。
  • 参数调整: 调整参数 ( α \alpha α) 需要更多的实验调优,以找到最佳参数设置。
  • 可解释性: ISRLU 不是一个广泛使用的激活函数,因此可能需要更多的背景知识来解释其作用和效果。

该激活函数在当前环境下很少使用。。。。但是从其性质上可以感觉到是一个不错的激活函数,可能会在某些应用中得到应用。。。。

3. 总结

到此,使用 激活函数总结(十九) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的激活函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53263.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python AI绘图教程

前提 1.安装python 2.安装git 步骤 下载stable-diffusion-webui项目&#xff08;链接&#xff1a;GitHub - AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI&#xff09; git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git 安装st…

商城-学习整理-高级-消息队列(十七)

目录 一、RabbitMQ简介(消息中间件)1、RabbitMQ简介&#xff1a;2、核心概念1、Message2、Publisher3、Exchange4、Queue5、Binding6、Connection7、Channel8、Consumer9、Virtual Host10、Broker 二、一些概念1、异步处理2、应用解耦3、流量控制5、概述 三、Docker安装RabbitM…

【C++ 学习 ⑰】- 继承(下)

目录 一、派生类的默认成员函数 二、继承与友元 三、继承与静态成员 四、复杂的菱形继承及菱形虚拟继承 五、继承和组合 一、派生类的默认成员函数 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认构造函数&#xff0c;那么必须在派生…

报错sql_mode=only_full_group_by

首发博客地址 https://blog.zysicyj.top/ 报错内容 ### The error may exist in file[D:\code\cppCode20221025\leader-system\target\classes\mapper\system\TJsonDataMapper.xml] ### The error may involve defaultParameterMap ### The error occurred while…

如何使用LLM实现文本自动生成视频

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景 介绍 基于扩散的图像生成模型代表了计算机视觉领域的革命性突破。这些进步由Imagen&#xff0c;DallE和MidJourney等模型开创&#xff0c;展示了文本条件图像生成的卓越功能。有关这些模型内部工作的…

【C++】UDP通信,实现文件的传输

目录 1 TCP与UDP比较 2 UDP 3 通信流程 4 实践 5 运行结果 1 TCP与UDP比较 2 UDP简介 UDP通信是无连接的,因此不需要

Spring与Mybatis集成且Aop整合(放飞双手,迅速完成CRUD及分页)

目录 一、概述 二、集成 ( 1 ) 为什么 ( 2 ) 优点 ( 3 ) 实例 三、整合 3.1 讲述 3.2 整合进行分页 带我们带来的收获 一、概述 集成是指将不同的组件、系统或框架整合在一起&#xff0c;使它们能够协同工作&#xff0c;共同完成某个功能或提供某种服务。在软件开发中&…

C语言之三子棋游戏实现篇

目录 主函数test.c 菜单函数 选择实现 游戏函数 &#xff08;函数调用&#xff09; 打印棋盘数据 打印展示棋盘 玩家下棋 电脑下棋 判断输赢 循环 test.c总代码 头文件&函数声明game.h 头文件的包含 游戏符号声明 游戏函数声明 game.h总代码 游戏函数ga…

服务器中了mkp勒索病毒该怎么办?勒索病毒解密,数据恢复

mkp勒索病毒算的上是一种比较常见的勒索病毒类型了。它的感染数量上也常年排在前几名的位置。所以接下来就由云天数据恢复中心的技术工程师来对mkp勒索病毒做一个分析&#xff0c;以及中招以后应该怎么办。 一&#xff0c;中了mkp勒索病毒的表现 桌面以及多个文件夹当中都有一封…

Linux:shell脚本:基础使用(6)《正则表达式-awk工具》

简介 awk是行处理器: 相比较屏幕处理的优点&#xff0c;在处理庞大文件时不会出现内存溢出或是处理缓慢的问题&#xff0c;通常用来格式化文本信息 awk处理过程: 依次对每一行进行处理&#xff0c;然后输出 1&#xff09;awk命令会逐行读取文件的内容进行处理 2&#xff09;a…

Neo4j实现表字段级血缘关系

需求背景 需要在前端页面展示当前表字段的所有上下游血缘关系&#xff0c;以进一步做数据诊断治理。大致效果图如下&#xff1a; 首先这里解释什么是表字段血缘关系&#xff0c;SQL 示例&#xff1a; CREATE TABLE IF NOT EXISTS table_b AS SELECT order_id, order_status F…

PB4引脚作GPIO上电高电平问题

问题说明 给旧项目debug&#xff0c;芯片是国民技术 N32G452VEL7 &#xff08;用起来跟32没多大差 包括PB4在内有多个引脚作为输出&#xff0c;默认低电平&#xff0c;在状态机内先输出高电平再回到低电平&#xff0c;来模拟按键的状态&#xff08;相当于按键按下松开后按键功…

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称&#xff1a; 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &…

词向量及文本向量

文章目录 引言1. 文本向量化2. one-hot编码3. 词向量-word2vec3.1 词向量-基于语言模型 4 词向量 - word2vec基于窗口4.1 词向量-如何训练 5. Huffman树6. 负采样-negative sampling7. Glove基于共现矩阵7.1 Glove词向量7.2 Glove对比word2vec 8. 词向量训练总结9. 词向量应用9…

论文解读 | ScanNet:室内场景的丰富注释3D重建

原创 | 文 BFT机器人 大型的、有标记的数据集的可用性是为了利用做有监督的深度学习方法的一个关键要求。但是在RGB-D场景理解的背景下&#xff0c;可用的数据非常少,通常是当前的数据集覆盖了一小范围的场景视图&#xff0c;并且具有有限的语义注释。 为了解决这个问题&#…

9.阿里Sentinel哨兵

1.Sentinel Sentinel&#xff08;哨兵&#xff09;是由阿里开源的一款流量控制和熔断降级框架&#xff0c;用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分&#xff0c;用于保护服务不被异常流量冲垮&#xff0c;从而提高系统的稳定…

系统上线安全测评需要做哪些内容?

电力信息系统、航空航天、交通运输、银行金融、地图绘画、政府官网等系统再正式上线前需要做安全测试。避免造成数据泄露从而引起的各种严重问题。 那么系统上线前需要做哪些测试内容呢&#xff1f;下面由我给大家介绍 1、安全机制检测-应用安全 身份鉴别 登录控制模块 应提供…

Linux:权限

目录 一、shell运行原理 二、权限 1.权限的概念 2.文件访问权限的相关设置方法 三、常见的权限问题 1.目录权限 2.umsk(权限掩码) 3.粘滞位 一、shell运行原理 1.为什么我们不是直接访问操作系统&#xff1f; ”人“不善于直接使用操作系统如果让人直接访问操作系统&a…

数据通信——TCP(三次握手及基础特性)

引言 TCP&#xff08;传输控制协议&#xff09;&#xff0c;不像之前的UDP那样&#xff0c;因为这个协议要将很多复杂的东西&#xff0c;所以这次的特性是简单的特性&#xff0c;后续会讲一些复杂难懂的知识&#xff0c;这次先说一些TCP明显的特性 面向连接 TCP提供了对连接的管…

构建高性能云原生大数据处理平台:融合人工智能优化数据分析流程

文章目录 架构要点优势与应用案例研究&#xff1a;基于云原生大数据平台的智能营销分析未来展望&#xff1a;大数据与人工智能的融合结论 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏…