【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析

【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析

在这里插入图片描述

1 题目

一、问题背景

近年来,随着智能手机的产生,发展到爆炸式的普及增长,不仅推动了中 国智能手机市场的发展和扩大,还快速的促进手机软件的开发。近年中国智能手 机市场品牌竞争进一步加剧,中国超越美国成为全球第一大智能手机市场。手机 软件日新月异,让人们更舒适的使用手机,为人们的生活带来很多乐趣,也产生 了新的群体“低头一族”。手机软件进入人们的生活,游戏、购物、社交、资讯、理财等等APP吸引着、方便着现代社会的人们,让手机成为人们出门的必备物 品。

该数据来自某公司某年连续30天的4万多智能手机用户的监测数据,已经做 了脱敏和数据变换处理。每天的数据为1个txt文件,共10列,记录了每个用户(以uid为唯一标识)每天使用各款APP(以appid为唯一标识)的起始时间,使 用时长,上下流量等。具体说明见表1。此外,有一个辅助表格app_class.csv,共两列。第一列是appid,给出4000多个常用APP所属类别(app_class),比如:社交类、影视类、教育类等,用英文字母a-t表示,共20个常用得所属类别,其余APP不常用,所属类别未知。

表 1

变量编号变量名释义
1uid用户的id
2appidAPP的id(与app_class文件中的第一列对应)
3app_typeAPP类型:系统自带、用户安装
4start_day使用起始天,取值1-30(注:第一天数据的头两行的使用起始天取 值为0,说明是在这一天的前一天开始使用的)
5start_time使用起始时间
6end_day使用结束天
7end_time使用结束时间
8duration使用时长(秒)
9up_flow上行流量
10down_flow下行流量

二、解决问题

  1. APP使用情况预测分析:要研究的问题是通过用户的APP使用记录预测用户未来是否使用APP所属类型(app_class),以及对应的具体类型(appid)( 多重分类问题)

(一)对用户使用APP的情况进行预测,根据用户第1~15天的常用所属20 类APP的使用情况,建立一个模型来预测用户在16~30天会使用哪些类的APP, 给出预测结果和真实结果相比的准确率。(注:测试集不能参与到训练和验证中,否则作违规处理)

(二)对用户使用APP的使用时长进行预测,根据用户第115天的常用所属20类APP的使用情况,建立一个模型来预测用户在1630天对于每一类APP的有效日均使用时长。评价指标选用NMSE. (注:测试集不能参与到训练和验证中,否则作违规处理)

  1. 由于APP数量众多,总量多达几万,绝大多数市场占用率极低,因此仅使用app_class.csv文件中给出的4000多个常用的并且用户数超过10个APP进行推荐。通过每个用户30天的手机app使用情况,建立一个推荐系统模型,对每一个用户推荐app,并且给出推荐系统模型的详细描述,推荐系统使用的模型参数量,以及对推荐系统的预测结果进行评价。

2 思路分析

2.1 问题一

在初赛的基础上,重新训练模型,重新预测一遍就行。

2.2 问题二

这是一个推荐系统开发的问题。

  1. 数据预处理:对数据进行清洗和预处理,包括去除重复值、缺失值填充、异常值处理、特征工程等。
  2. 特征提取:从数据中提取有用的特征,包括用户的历史使用记录、app所属类别、app类型等。
  3. 模型选择:基于内容的推荐、协同过滤推荐、深度学习推荐等推荐模型。
  4. 模型训练:将预处理后的数据输入到所选的机器学习模型中进行训练,得到模型参数。
  5. 模型评估:对训练好的模型进行评估,如准确率、召回率、F1值等。
  6. 模型优化:根据评估结果进行模型参数的调整和优化,模型改进、模型融合等方法。

我们可以考虑使用协同过滤推荐模型,模型参数包括用户偏好矩阵和物品偏好矩阵,参数量取决于用户和物品的数量。对于推荐系统的预测结果进行评价,可以使用交叉验证或者留出法等方法进行评估。

3 Python实现

3.1 数据预处理

import pandas as pd
import os
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
tqdm.pandas()
# 合并数据1-30天的数据
folder_path = '初赛数据集/'
dfs = []
for filename in os.listdir(folder_path):if filename.endswith('.txt'):csv_path = os.path.join(folder_path, filename)tempdf = pd.read_csv(csv_path)dfs.append(tempdf)folder_path = '复赛数据集/'
for filename in os.listdir(folder_path):if filename.endswith('.txt'):csv_path = os.path.join(folder_path, filename)tempdf = pd.read_csv(csv_path)dfs.append(tempdf)
df = pd.concat(dfs,axis=0)
df.shape
import pandas as pd
import matplotlib.pyplot as plt# 数据清洗
df.loc[df['start_day'] == 0, 'start_day'] = 1  # 将使用起始天为0的行,修改为1
df['start_time'] = pd.to_datetime(df['start_time'])  # 转换为datetime类型
df['end_time'] = pd.to_datetime(df['end_time'])  # 转换为datetime类型
df['usage_time'] = (df['end_time'] - df['start_time']) / pd.Timedelta(minutes=1)  # 使用时长(分钟)
df['up_flow_mb'] = df['up_flow'] / 1024 / 1024  # 上行流量(MB)
df['down_flow_mb'] = df['down_flow'] / 1024 / 1024  # 下行流量(MB)
df = df[df['duration'] != 0]  # 剔除使用时长为0的行
df = df[df['up_flow'] != 0]  # 剔除上行流量为0的行
df = df[df['down_flow'] != 0]  # 剔除下行流量为0的行
df
# 剔除使用时长和流量明显异常的行
# 剔除使用时长小于10秒的行
df = df[df['usage_time'] >= 10]
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
axs[0].hist(df['usage_time'])
axs[0].set_title('Usage Time')
axs[0].set_xlabel('Time (minutes)')
axs[1].hist(df['up_flow_mb'])
axs[1].set_title('Up Flow')
axs[1].set_xlabel('Up Flow (MB)')
axs[2].hist(df['down_flow_mb'])
axs[2].set_title('Down Flow')
axs[2].set_xlabel('Down Flow (MB)')
plt.show()
# APP分类信息(可根据app_id和app_class文件进行关联)
cate_df_1 = pd.read_csv('初赛数据集/app_class.csv',header=None)
cate_df_2 = pd.read_csv('复赛数据集/app_class.csv',header=None)
cate_df = pd.concat([cate_df_1,cate_df_2],axis=0)
cate_df.columns = ['appid','letter']
# 定义字母编码映射字典
char_map = {chr(i + 96): i for i in range(1, 27)}
# 将'letter'列中的字母进行编码
cate_df['letter'] = cate_df['letter'].map(char_map)
cate_dict = dict(zip(cate_df['appid'],cate_df['letter']))
df['category'] = df['appid'].map(cate_dict)
df.to_excel('data/复赛数据集1-30day.xlsx',index=False)

3.2 推荐模型建立与评价

...略,请下载完整资料:betterbench.top/#/106/detail

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53032.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CleanMyMac2024永久版Mac清理工具

Mac电脑作为相对封闭的一个系统,它会中毒吗?如果有一天Mac电脑产生了疑似中毒或者遭到恶意不知名攻击的现象,那又应该如何从容应对呢?这些问题都是小编使用Mac系统一段时间后产生的疑惑,通过一番搜索研究,小…

Redis 7 教程 数据类型 基础篇

🌹 引导 Commands | Redishttps://redis.io/commands/Redis命令中心(Redis commands) -- Redis中国用户组(CRUG)Redis命令大全,显示全部已知的redis命令,redis集群相关命令,近期也会翻译过来,Redis命令参考,也可以直接输入命令进行命令检索。

10 - 网络通信优化之通信协议:如何优化RPC网络通信?

微服务框架中 SpringCloud 和 Dubbo 的使用最为广泛,行业内也一直存在着对两者的比较,很多技术人会为这两个框架哪个更好而争辩。 我记得我们部门在搭建微服务框架时,也在技术选型上纠结良久,还曾一度有过激烈的讨论。当前 Sprin…

OSCS开源安全周报第 56 期:Apache Airflow Spark Provider 任意文件读取漏洞

本周安全态势综述 OSCS 社区共收录安全漏洞 3 个,公开漏洞值得关注的是 Apache NiFi 连接 URL 验证绕过漏洞(CVE-2023-40037)、PowerJob 未授权访问漏洞(CVE-2023-36106)、Apache Airflow Spark Provider 任意文件读取漏洞(CVE-2023-40272)。 针对 NPM 、PyPI 仓库…

开发一款AR导览导航小程序多少钱?ar地图微信小程序 ar导航 源码

随着科技的不断发展,增强现实(AR)技术在不同领域展现出了巨大的潜力。AR导览小程序作为其中的一种应用形式,为用户提供了全新的观赏和学习体验。然而,开发一款高质量的AR导览小程序需要投入大量的时间、人力和技术资源…

记录一次presto sql执行报错 Error executing query的解决办法

在执行presto sql 时报错截图如下: 查看后台执行报错日志: java.sql.SQLException: Error executing query at com.facebook.presto.jdbc.PrestoStatement.internalExecute(PrestoStatement.java:307) at com.facebook.presto.jdbc.PrestoStatement.exe…

elment-ui中使用el-steps案例

el-steps案例 样式 代码 <div class"active-box"><div class"active-title">请完善</div><el-steps :active"active" finish-status"success" align-center><el-step title"第一步" /><…

Qt ui对某控件进行全局提升报错:no such file or directory

问题 在Qt项目中&#xff0c;设计师界面&#xff0c;对某一控件进行提升&#xff0c;设置完“提升的类名称”、“头文件”、全局包含后&#xff0c;构建时&#xff0c;报“no such file or directory”错误&#xff0c;但文件命名存在呀。 解决 根据问题就应该明白&#xf…

MAE 论文精读 | 在CV领域自监督的Bert思想

1. 背景 之前我们了解了VIT和transformer MAE 是基于VIT的&#xff0c;不过像BERT探索了自监督学习在NLP领域的transformer架构的应用&#xff0c;MAE探索了自监督学习在CV的transformer的应用 论文标题中的Auto就是说标号来自于图片本身&#xff0c;暗示了这种无监督的学习 …

html实现页面切换、顶部标签栏(可删、可切换,点击左侧超链接出现标签栏)

一、在一个页面&#xff08;不跨页面&#xff09; 效果&#xff1a; 代码 <!DOCTYPE html> <html><head><style>/* 设置标签页外层容器样式 */.tab-container {width: 100%;background-color: #f1f1f1;overflow: hidden;}/* 设置标签页选项卡的样式…

lnmp架构-PHP

08 PHP源码编译 09 php初始化配置 nginx 的并发能力强 phpinfo函数 就是 显示php信息 10 php的功能模块 编译memcache模块 php的动态模块方式 mamcache 就是内存 直接从内存中命中 所以性能非常好 但是 这还不是最好的方式 工作流程 关键看后端的 php 什么时候处理完 mamcac…

WPF读取dicom序列:实现上一帧、下一帧、自动播放、暂停

一、整体设计概况 创建WPF程序使用.Net Framework4.8定义Image控件展示图像增加标签展示dcm文件信息规划按钮触发对应的事件:上一帧、下一帧、自动播放、暂停、缩放、播放速率二、页面展示 三、代码逻辑分析 Windows窗体加载Loaded事件:生成初始图像信息Windows窗体加载Mous…

【Docker】Docker网络与存储(三)

前言&#xff1a; Docker网络与存储的作用是实现容器之间的通信和数据持久化&#xff0c;以便有效地部署、扩展和管理容器化应用程序。 文章目录 Docker网络桥接网络容器之间的通信 覆盖网络创建一个覆盖网络 Docker存储卷 总结 Docker网络 Docker网络是在容器之间提供通信的机…

Android中的APK打包与安全

aapt2命令行实现apk打包 apk文件结构 classes.dex&#xff1a;Dex&#xff0c;即Android Dalvik执行文件 AndroidManifest.xml&#xff1a;工程中AndroidManifest.xml编译后得到的二进制xml文件 META-INF&#xff1a;主要保存各个资源文件的SHA1 hash值&#xff0c;用于校验…

SMC_TRAFO_GantryCutter2 (FB) 带刀片旋向龙门

裁布机&#xff1a;刀片按XY走向&#xff0c;偏转刀片角度。 pi&#xff1a;目标位置矢量&#xff08;x&#xff0c;y&#xff09;&#xff0c;插值器的输出 v&#xff1a;当前路径切线的矢量&#xff0c;插值器的输出 dOffsetX&#xff1a; x轴的附加偏移 dOffsetY&#xf…

桥梁安全监测方法和内容是什么?

桥梁安全监测方法和内容是什么?桥梁监测是保障桥梁安全和稳定的重要手段。随着科技的进步&#xff0c;桥梁监测技术和设备不断完善&#xff0c;监测内容也越来越全面。本文万宾科技小编将为大家介绍桥梁安全监测的方法和内容&#xff0c;以期帮助大家更好地了解这一领域。 桥梁…

kafka--技术文档--spring-boot集成基础简单使用

阿丹&#xff1a; 查阅了很多资料了解到&#xff0c;使用了spring-boot中整合的kafka的使用是被封装好的。也就是说这些使用其实和在linux中的使用kafka代码的使用其实没有太大关系。但是逻辑是一样的。这点要注意&#xff01; 使用spring-boot整合kafka 1、导入依赖 核心配…

华为质量管理:从产品质量到用户体验,Kano模型成为新方向

目录 前言 华为质量管理的四个阶段 基于 IPD 如何做质量管理呢&#xff1f; CSDN相关课程 作者简介 前言 今天继续来谈谈华为流程体系中的质量管理过程。 通常来说质量具体是指产品的质量&#xff0c;也就是产品的使用价值及其属性。 产品再细分的话可以分为三个层次&a…

知识图谱Neo4j安装到实践全过程

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 在本次实战中&#xff0c;我们将一起完成知识图谱Neo4j安装到实践全过程&#xff0c;探索其中的关系和属性。知识图谱是一种以三元组形式存储的数据结构&#xff0c;由实体、关系和属性组成&#xff0c;能够帮助我们更好地…

Python数据分析 | 各种图表对比总结

本期将带领大家一起对在数据可视化的过程中常用的一些图表进行下总结&#xff1a; 条形图 【适用场景】 适用场合是二维数据集&#xff08;每个数据点包括两个值x和y&#xff09;&#xff0c;但只有一个维度需要比较&#xff0c;用于显示一段时间内的数据变化或显示各项之间的…