function [center, U, obj_fcn] = KFCMClust(data, cluster_n, kernel_b,options)
% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = KFCMClust(Data,N_cluster,kernel_b,options);
% 2. [center,U,obj_fcn] = KFCMClust(Data,N_cluster,kernel_b);
% 3. [center,U,obj_fcn] = KFCMClust(Data,N_cluster);
%
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% kernel_b ---- 高斯核参数b (缺省值:150)
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志 (缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = KFCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;
% Author: Genial
% Date: 2005.5
% 一副图中显示多方图片:montage
error(nargchk(2,4,nargin)); % 检查输入参数个数
data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度,目前没有用
% 默认操作参数
default_b = 150; % 高斯核函数参数
default_options = [2; % 隶属度矩阵U的指数
100; % 最大迭代次数
1e-5; % 隶属度最小变化量,迭代终止条件
1]; % 每次迭代是否输出信息标志
if nargin == 2,
kernel_b = default_b;
options = default_options;
elseif nargin == 3,
options = default_options;
else % 分析有options做参数时候的情况
% 如果输入参数个数是3那么就调用默认的option;
% 如果用户给的opition数少于4个那么就将剩余的默认option加上;
if length(options) < 4,
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1);
% 将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1,
% 如果options中的指数m不超过1报错
error('The exponent should be greater than 1!');
end
end
% 将options 中的分量分别赋值给四个变量;
expo = options(1); % 隶属度矩阵U的指数
max_iter = options(2); % 最大迭代次数
min_impro = options(3); % 隶属度最小变化量,迭代终止条件
display = options(4); % 每次迭代是否输出信息标志
obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn
U = initkfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1
% 初始化聚类中心:从样本数据点中任意选取cluster_n个样本作为聚类中心。当然,
% 如果采用某些先验知识选取中心或许能够达到加快稳定的效果,但目前不具备这功能
index = randperm(data_n); % 对样本序数随机排列
center_old = data(index(1:cluster_n),:); % 选取随机排列的序数的前cluster_n个
% Main loop 主要循环
for i = 1:max_iter,
% 在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepkfcm(data,U,center_old, expo, kernel_b);
if display,
fprintf('KFCM:Iteration count = % d, obj. fcn = % f \n', i, obj_fcn(i));
end
center_old = center; % 用新的聚类中心代替老的聚类中心
% 终止条件判别
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,
end
end
iter_n = i; % 实际迭代次数
obj_fcn(iter_n+1:max_iter) = [];
% 子函数
function U = initkfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);