基于OpenCV实战(基础知识二)

目录

简介

1.ROI区域

2.边界填充

3.数值计算

4.图像融合


简介

OpenCV是一个流行的开源计算机视觉库,由英特尔公司发起发展。它提供了超过2500个优化算法和许多工具包,可用于灰度、彩色、深度、基于特征和运动跟踪等的图像处理和计算机视觉应用。OpenCV主要使用C++语言编写,同时也支持Python、Java、C等语言。由于其开源和广泛使用的特点,在计算机视觉和机器学习领域得到了广泛的应用。

1.ROI区域

截取我们感兴趣的区域:在一张图像中,我们可能只需要其中的一部分,那我们如何截取这部分呢?

在上一篇文章,我们提到图片的本质可以由一组数组来表示

那么我们是否可以用切片来选择我们想要的区域呢

import cv2image = cv2.imread('image/1.jpg')
cat = image[250:500, 250:500]
cv2.imshow('IMG', cat)
cv2.waitKey(0)
cv2.destroyAllWindows()

我们知道,图像是一组三维的数据,既然我们在平面上进行切片得到我们想要的区域,那么我们是否可以对它的通道进行切分呢?

import cv2
import numpy as npimage = cv2.imread('image/1.jpg')# cat = image[250:500, 250:500]
# cv2.imshow('IMG', cat)
b,g,r = cv2.split(image)
cat = np.hstack((b,g,r))
cv2.imshow('IMG',cat)cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.split()是OpenCV中的一个函数,用于将多通道图像拆分成各个单通道图像。

为什么都是是灰色的呢,因为提取完后的图片,本质变成了单通道。

那么我想要是那种红色的图片要怎么做呢?

第一种思路:把三个通道分别提取出来,然后创建一个类似图像数据的空数组,最后把你想要的那个通道填充进去

第二种思路:把另外两个通道的值重新复制为0,只保留希望的颜色通道。

import cv2
import numpy as npimage = cv2.imread('image/1.jpg')img = image.copy()
b, g, r = cv2.split(img)
arr = np.zeros_like(image)
arr[:, :, 2] = r
print(arr)
cv2.imshow('IMG',arr)
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2image = cv2.imread('image/1.jpg')img = image.copy()
img[:,:,0] = 0
img[:,:,1] = 0cv2.imshow('IMG', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

2.边界填充

在图像处理中,常用的边界填充方法有以下几种

常数填充(Constant Padding):使用固定的像素值填充边界。可以通过 cv2.copyMakeBorder() 函数实现,指定 borderType=cv2.BORDER_CONSTANT

复制填充(Replicate Padding):将边界像素的值复制到图像边界。可以通过 cv2.copyMakeBorder() 函数实现,指定 borderType=cv2.BORDER_REPLICATE

反射填充(Reflect Padding):将边界像素值按照镜像方式填充。可以通过 cv2.copyMakeBorder() 函数实现,指定 borderType=cv2.BORDER_REFLECT

import cv2
import numpy as npimage = cv2.imread('image/1.jpg')
top_size, bottom_size, left_size, right_size = (50, 50, 50, 50)replicate = cv2.copyMakeBorder(image, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(image, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT)
constant = cv2.copyMakeBorder(image, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_CONSTANT,value=0)
# print(image)
#
result = np.hstack((constant,reflect, replicate))cv2.imshow('IMG', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

当使用cv2.copyMakeBorder()函数进行边界填充时,有几个参数需要理解和设置:

  1. src:原始图像,即要进行边界填充的图像。

  2. topbottomleftright:指定要在图像的上方、下方、左侧和右侧添加的边界大小。可以为每个边界分别设置不同的大小,也可以将它们设置为相同的值。

  3. borderType:指定边界填充的方法。常用的参数选项包括:

    • cv2.BORDER_CONSTANT:常数填充,使用固定的像素值填充边界。
    • cv2.BORDER_REPLICATE:复制填充,将边界像素的值复制到图像边界。
    • cv2.BORDER_REFLECT:反射填充,将边界像素值按照镜像方式填充。
    • cv2.BORDER_WRAP:复制边界填充,将图像水平或垂直方向的边缘复制到对应边界。
  4. value:仅适用于borderType=cv2.BORDER_CONSTANT情况下,指定要用于填充边界的常数值。可以是一个标量(单个数值)或一个包含与图像通道数匹配的数值的元组。

3.数值计算

第一种,numpy层面的相加,ps 如果数值超过255 会自动对255取余

import cv2
import numpy as npimage1 = cv2.imread('image/car.jpg')
image2 = cv2.imread('image/circle.jpg')# img = np.array(image1)
image1_1= image1 + 10print(np.array(image1[:5,:,0]))
print(np.array(image1_1[0:5,:,0]))

第二种,opencv提供的函数

cv2.add(image1,image2)    需要保证图片的尺寸一样

import cv2
import numpy as npimage1 = cv2.imread('image/car.jpg')
image2 = cv2.imread('image/circle.jpg')
if image1.shape != image2.shape:image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
# img = np.array(image1)
image1_1 = image1 + 10
result = cv2.add(image1 ,image2)
print(np.array(image1[:5, :, 0]))
print(np.array(result[:5, :, 0]))

 与numpy不同的是它的数值不会超过255

4.图像融合

cv2.addWeighted() 函数是 OpenCV 中用于图像融合的函数

函数的语法如下:

dst = cv2.addWeighted(src1, alpha, src2, beta, gamma)
  • src1:要融合的第一个输入图像。

  • alpha:第一个输入图像的权重系数。它表示 src1 图像在融合结果中所占比例。

  • src2:要融合的第二个输入图像。

  • beta:第二个输入图像的权重系数。它表示 src2 图像在融合结果中所占比例。

  • gamma:亮度调节参数。它是一个可选的参数,用于进一步调整融合结果的亮度。

  • 首先需要注意的一点是,图像融合的两张图片的shape必须一致,不然无法融合。

如下所示

import cv2image1 = cv2.imread('image/1.jpg')
image2 = cv2.imread('image/lena.jpg')blended_image = cv2.addWeighted(image1, 0.6, image2, 0.4, 0)cv2.imshow('IMG', blended_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

所以在融合前我们需要,将图片的shape设为一致

import cv2image1 = cv2.imread('image/1.jpg')
image2 = cv2.imread('image/lena.jpg')
# 调整两个图像的大小以保持一致image1 = cv2.resize(image1, (500, 500))
image2 = cv2.resize(image2, (500, 500))blended_image = cv2.addWeighted(image1, 0.6, image2, 0.4, 0)cv2.imshow('IMG', blended_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52844.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

水果flstudio好用吗?中文版FL21最新版本如何下载

FL Studio21版是一款功能强大的音乐制作软件,广泛应用于电子音乐、流行音乐、电影配乐等领域。它提供了丰富多样的音频合成和编辑工具,使音乐制作变得更加灵活多样。无论是初学者还是专业音乐制作人,都可以通过直观的界面和丰富的音频特效来实…

论文阅读:DIN-SQL: Decomposed In-Context Learning of Text-to-SQL withSelf-Correction

NL2SQL是将自然语言转化为SQL的任务,该任务隶属于NLP的子任务,NL2SQL在AIGC时代之前,以seq2seq、BERT等系列的模型在NL2SQL的主流数据集上取得了不错的效果,2022年底,ChatGPT爆火,凭借LLM强大的逻辑推理、上…

NLP的tokenization

GPT3.5的tokenization流程如上图所示,以下是chatGPT对BPE算法的解释: BPE(Byte Pair Encoding)编码算法是一种基于统计的无监督分词方法,用于将文本分解为子词单元。它的原理如下: 1. 初始化:将…

bh002- Blazor hybrid / Maui 保存设置快速教程

1. 建立工程 bh002_ORM 源码 2. 添加 nuget 包 <PackageReference Include"BootstrapBlazor.WebAPI" Version"7.*" /> <PackageReference Include"FreeSql" Version"*" /> <PackageReference Include"FreeSql.…

设计模式(8)外观模式

一、 1、使用背景&#xff1a;降低访问复杂系统的内部子系统时的复杂度&#xff0c;简化客户端之间的接口。 2、定义&#xff1a; 为子系统中的一组接口定义一个一致的界面&#xff0c;此模式定义了一个高层接口&#xff0c;这个接口使得这一子系统更加容易使用。完美地体现…

Linux 内核与架构速查

Linux 内核与架构速查 博主博客 https://blog.uso6.comhttps://blog.csdn.net/dxk539687357 本文主要记录查询 Linux 计算机的内核与架构&#xff0c; 用于下载对应架构的第三方软件。 一、介绍 如上图所示&#xff0c; 有时候我们下载一些第三方软件&#xff0c; 软件会有很…

如何快速在vscode中实现不同python文件的对比查看

总体而言&#xff1a;两种方式。一种是直接点击vscode右上角的图标&#xff08;见下图&#xff09;。 另一种方式就是使用快捷键啦“**Ctrl\**”&#xff0c;用的时候选中想要对比的python文件&#xff0c;然后快捷键就可以达到下图效果了&#xff1a; 建议大家直接使用第二…

【位运算】算法实战

文章目录 一、算法原理常见的位运算总结 二、算法实战1. leetcode面试题01.01. 判断字符是否唯一2. leetcode268 丢失的数字3. leetcode371 两整数之和4. leetcode004 只出现一次的数字II5. leetcode面试题17.19. 消失的两个数字 三、总结 一、算法原理 计算机中的数据都以二进…

JAVA switch case 穿透问题

1&#xff0c;前提 其实开发中很少会用到switch &#xff0c;一般更倾向于if-else&#xff0c; 但是最近接手的项目&#xff0c;前人写的代码都用switch &#xff0c; 但是我一直以来对switch 的理解就跟if一样&#xff0c; 然后项目运用的时候才发现这玩意居然还有穿透问题 …

14-数据结构-二叉树的创建以及前中后遍历,以及结点和叶子节点的计算(C语言)

概述&#xff1a; 二叉树&#xff0c;这里采用孩子链表存储法&#xff0c;即一个数据域和两个左右孩子指针域。随后递归进行遍历即可。在创建二叉树的时候&#xff0c;先创建各个二叉树结点&#xff08;这里的结点采用动态分配&#xff0c;因此结点为指针变量&#xff09;&…

(三)Linux中卸载docker(非常详细)

docker 卸载 使用yum安装docker 如需卸载docker可以按下面步骤操作&#xff1a; 1、停止docker服务 systemctl stop docker 2、查看yum安装的docker文件包 yum list installed |grep docker 3、查看docker相关的rpm源文件 rpm -qa |grep docker 4、删除所有安装的docke…

4.1011

目录 四次挥手中收到乱序的FIN包会如何处理&#xff1f; 在 TIME_WAIT 状态的 TCP 连接&#xff0c;收到 SYN 后会发生什么&#xff1f; 四次挥手中收到乱序的FIN包会如何处理&#xff1f; 如果FIN报文比数据包先道道客户端&#xff0c;此时FIN是一个乱序报文&#xff0c;此时…

Postgresql部署及简单操作

目录 1、介绍 2、什么是PostgreSQL 3、PostgreSQL 的特点 4、数据库定为 5、环境准备 6、编译安装 6.1 安装依赖包 6.2 下载安装包 6.3 创建用户 6.4 创建 postgresql数据目录并授权 6.5 上传压缩包并解压 6.6 编译postgresql源码 6.7 配置环境变量 6.8 初始化数…

LeetCode--HOT100题(40)

目录 题目描述&#xff1a;543. 二叉树的直径&#xff08;简单&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;543. 二叉树的直径&#xff08;简单&#xff09; 给你一棵二叉树的根节点&#xff0c;返回该树的 直径 。 二叉树的 直径 是指树中任意两个节点之间最…

Linux--线程地址空间

1.程序地址空间 先来就看这张图 这是一张程序地址分布的图&#xff0c;通过一段代码来证明地址空间的分布情况 编译结果&#xff1a; 可以看出的是&#xff0c;父子进程中对于同一个变量打印的地址是一样的&#xff0c;这是因为子进程以父进程为模板&#xff0c;因为都没有对数…

数据结构入门 — 链表详解_双向链表

前言 数据结构入门 — 双向链表详解* 博客主页链接&#xff1a;https://blog.csdn.net/m0_74014525 关注博主&#xff0c;后期持续更新系列文章 文章末尾有源码 *****感谢观看&#xff0c;希望对你有所帮助***** 系列文章 第一篇&#xff1a;数据结构入门 — 链表详解_单链表…

【GeoDa实用技巧100例】025:geoda空间回归分析案例教程

严重声明:本文来自专栏《GeoDa空间计量案例教程100例》,为CSDN博客专家刘一哥GIS原创,原文及专栏地址为:https://blog.csdn.net/lucky51222/category_12373659.html,谢绝转载或爬取!!! 文章目录 一、空间自回归模型二、Geoda空间回归分析普通最小二乘法回归(OLS)空间…

Linux安装Redis数据库,无需公网IP实现远程连接

文章目录 1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 保留一个固定tcp地址4.2 配置固定TCP地址4.3 使用固定的tcp地址连接 Redis作为一款高速缓存的key value键值对的数据库,在…

【Vue】vue2项目使用swiper轮播图2023年8月21日实战保姆级教程

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、npm 下载swiper二、使用步骤1.引入库声明变量2.编写页面3.执行js 总结 前言 swiper轮播图官网 参考文章&#xff0c;最好先看完他的介绍&#xff0c;再看…

WPF中的数据转换-StringFormat

WPF中的数据转换-StringFormat 前言 字符串格式化。使用该功能可以通过设置Binding.StringFormat属性对文本形式的数据进行转换——例如包含日期和数字的字符串。对于至少一半的格式化任务&#xff0c;字符串格式化是一种便捷的技术。 使用 当设置Binding.StringFormat属性…