smith标准型_线性系统理论(八)多项式矩阵Smith-McMillan标准型计算方法

c0e8034a7fb3ae8dabbe88f5cd3de357.png

1 参考[1]

Chenglin Li:线性系统理论(七)finite- and infinite-zeros​zhuanlan.zhihu.com
9260ff9ef948a1d44a48857c23aad9aa.png

多项式矩阵Smith-McMillan标准型确定方法分析

2 单模矩阵法

Chenglin Li:线性系统理论(七)finite- and infinite-zeros

3 最大公因子法

3.1 原理

对于多项式矩阵G(s),其Smith型

equation?tex=%5CLambda%28s%29 的对角元素为
equation?tex=%5Clambda_1%2C%5Clambda_2%2C%5Clambda_3%2C... 即不变多项式。

令Di(s)=gcd{G(s)的所有

equation?tex=i%5Ctimes+i 子式,i=1,2,3...},
equation?tex=D_0%28s%29%3D1.+

那么可得:

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Clambda_1%3D%26%5Cfrac%7BD_1%28s%29%7D%7BD_0%28s%29%7D%2C%5C%5C+%5Clambda_2%3D%26%5Cfrac%7BD_2%28s%29%7D%7BD_1%28s%29%7D%2C%5C%5C+%5Clambda_3%3D%26%5Cfrac%7BD_3%28s%29%7D%7BD_2%28s%29%7D%2C+...++%5Cend%7Baligned%7D+%5Cright.%5C%5C

3.2 举例

equation?tex=H%28%5Clambda%29%3D%5Cleft%28+%5Cbegin%7Bmatrix%7D+-%5Cfrac%7B1%7D%7B%5Clambda-1%7D%260%260%5C%5C+0%26-%5Cfrac%7B%5Clambda%7D%7B%5Clambda-1%7D%260%5C%5C+0+%260%26%5Cfrac%7B%28%5Clambda-1%29%5E2%7D%7B%5Clambda%5E2%7D++%5Cend%7Bmatrix%7D++%5Cright%29.%5C%5C

equation?tex=H%28%5Clambda%29 所有元素分母的最小公倍数为

equation?tex=d%28%5Clambda%29%3D%5Clambda%5E2%28%5Clambda-1%29%2C+N%28%5Clambda%29%3D+%5Cleft%28+%5Cbegin%7Bmatrix%7D+-%5Clambda%5E2+%26+0+%26+0%5C%5C++0+%26+-%5Clambda%5E3+%26+0%5C%5C++0+%26+0+%26+%28%5Clambda-1%29%5E3++%5Cend%7Bmatrix%7D+++%5Cright%29.%5C%5C

equation?tex=N%28%5Clambda%29 各阶子式的最大公因子为:

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+D_0%3D%261%2C%5C%5C+D_1%3D%26+gca+%5Cleft%5C%7B-%5Clambda%5E2%2C-%5Clambda%5E3%2C%28%5Clambda-1%29%5E3+%5Cright%5C%7D%3D1%2C%5C%5C+D_2%3D%26+gca+%5Cleft%5C%7B-%5Clambda%5E5%2C-%5Clambda%5E2%28%5Clambda-1%29%5E3%2C%5Clambda%5E3%28%5Clambda-1%29%5E3+%5Cright%5C%7D%3D%5Clambda%5E2%2C%5C%5C+D_1%3D%26+gca+%5Cleft%5C%7B%5Clambda%5E5%28%5Clambda-1%29%5E3+%5Cright%5C%7D%3D%5Clambda%5E5%28%5Clambda-1%29%5E3.%5C%5C+++%5Cend%7Baligned%7D+%5Cright.%5C%5C

Smith不变多项式为(需检查是否满足首一性):

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Clambda_1%3D%261%2Fd%28%5Clambda%29%2C%5C%5C+%5Clambda_2%3D%26%5Clambda%5E2%2Fd%28%5Clambda%29%2C%5C%5C+%5Clambda_3%3D%26+%5Clambda%5E3%28%5Clambda-1%29%5E3%2Fd%28%5Clambda%29.++%5Cend%7Baligned%7D+%5Cright.%5C%5C

Smith-McMillan形式为:

equation?tex=M%28%5Clambda%29%3D%5Cleft%28+%5Cbegin%7Bmatrix%7D+%5Cfrac%7B1%7D%7B%5Clambda%5E2%28%5Clambda-1%29%7D%260%260%5C%5C+0%26%5Cfrac%7B1%7D%7B%5Clambda-1%7D%260%5C%5C+0+%260%26%5Clambda%28%5Clambda-1%29%5E2++%5Cend%7Bmatrix%7D++%5Cright%29.%5C%5C

4 结构指数法

4.1 评价值

equation?tex=%7CG%7C%5E%7Bi%7D 为G(s)的所有
equation?tex=i%5Ctimes+i 子式,i=1,2,3...}, 则G(s)在
equation?tex=s%3D%5Cxi_k 上的第
equation?tex=i 阶评价值为

equation?tex=v_%7B%5Cxi_k%7D%5E%7B%28i%29%7D%28G%29%3Dmin%5Cleft%5C%7B+v_%7B%5Cxi_k%7D+%5Cleft%28+%7CG%7C%5Ei++%5Cright%29+%5Cright%5C%7D.%5C%5C

4.2 举例分析

equation?tex=G%28s%29%3D%5Cleft%28+%5Cbegin%7Bmatrix%7D+%5Cfrac%7Bs%7D%7B%28s%2B1%29%5E2%28s%2B2%29%5E2%7D+%26%5Cfrac%7Bs%7D%7B%28s%2B2%29%5E2%7D%5C%5C+-%5Cfrac%7Bs%7D%7B%28s%2B2%29%5E2%7D+%26-%5Cfrac%7Bs%7D%7B%28s%2B2%29%5E2%7D%5C%5C++%5Cend%7Bmatrix%7D++%5Cright%29%5C%5C

G(s)1阶子式:

equation?tex=%7CG%7C%5E1%3D%5Cfrac%7Bs%7D%7B%28s%2B1%29%5E2%28s%2B2%29%5E2%7D%2C%5Cfrac%7B-s%7D%7B%28s%2B2%29%5E2%7D%2C%5Cfrac%7Bs%7D%7B%28s%2B1%29%5E2%7D%2C%5Cfrac%7B-s%7D%7B%28s%2B2%29%5E2%7D.%5C%5C

G(s)2阶子式:

equation?tex=%7CG%7C%5E2%3D%5Cfrac%7Bs%5E3%7D%7B%28s%2B1%29%5E2%28s%2B2%29%5E3%7D.%5C%5C

G(s)在s=0处的评价值:

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+v_0%5E%7B%281%29%7D%28G%29%3D%26min%5Cleft%5C%7B+1%2C1%2C1%2C1+%5Cright%5C%7D%3D1%2C%5C%5C+v_0%5E%7B%282%29%7D%28G%29%3D%26min%5Cleft%5C%7B+3+%5Cright%5C%7D%3D3.%5C%5C++%5Cend%7Baligned%7D++%5Cright.%5C%5C

G(s)在s=-1处的评价值:

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+v_%7B-1%7D%5E%7B%281%29%7D%28G%29%3D%26min%5Cleft%5C%7B+-2%2C0%2C0%2C0+%5Cright%5C%7D%3D-2%2C%5C%5C+v_%7B-1%7D%5E%7B%282%29%7D%28G%29%3D%26min%5Cleft%5C%7B+-2+%5Cright%5C%7D%3D-2.%5C%5C++%5Cend%7Baligned%7D++%5Cright.%5C%5C

G(s)在s=-2处的评价值:

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+v_%7B-2%7D%5E%7B%281%29%7D%28G%29%3D%26min%5Cleft%5C%7B+-2%2C-2%2C-2%2C-2+%5Cright%5C%7D%3D-2%2C%5C%5C+v_%7B-2%7D%5E%7B%282%29%7D%28G%29%3D%26min%5Cleft%5C%7B+-3+%5Cright%5C%7D%3D-3.%5C%5C++%5Cend%7Baligned%7D++%5Cright.%5C%5C

4.3 结构指数组

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Csigma_1%28%5Cxi%29%3D%26v_%7B%5Cxi%7D%5E%7B%281%29%7D%28G%29%2C%5C%5C+%5Csigma_2%28%5Cxi%29%3D%26v_%7B%5Cxi%7D%5E%7B%282%29%7D%28G%29-v_%7B%5Cxi%7D%5E%7B%281%29%7D%28G%29%2C%5C%5C+%5Csigma_3%28%5Cxi%29%3D%26v_%7B%5Cxi%7D%5E%7B%283%29%7D%28G%29-v_%7B%5Cxi%7D%5E%7B%282%29%7D%28G%29%2C%5C%5C+...+++%5Cend%7Baligned%7D++%5Cright.%5C%5C

对于4.2的例子

equation?tex=%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Csigma_1%280%29%3D%261%2C%5C%5C+%5Csigma_2%280%29%3D%263-1%3D2.%5C%5C+%5Cend%7Baligned%7D++%5Cright.+%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Csigma_1%28-1%29%3D%26-2%2C%5C%5C+%5Csigma_2%28-1%29%3D%26-2-%28-2%29%3D0.%5C%5C+%5Cend%7Baligned%7D++%5Cright.+%5Cleft%5C%7B+%5Cbegin%7Baligned%7D+%5Csigma_1%28-2%29%3D%26-2%2C%5C%5C+%5Csigma_2%28-2%29%3D%26-3-%28-2%29%3D-1.%5C%5C+%5Cend%7Baligned%7D++%5Cright.%5C%5C

4.4 构造Smith-McMillan型

equation?tex=M%28s%29%3D+%5Cleft%28+%5Cbegin%7Bmatrix%7D+%5Cprod_%7Bk%3D1%7D%5E%7Br%7DM_%7B%5Cxi_k%7D%28s%29+%26+0%5C%5C+0+%26+0%5C%5C++%5Cend%7Bmatrix%7D+%5Cright%29.%5C%5C

equation?tex=M_%7B%5Cxi_k%7D%28s%29%3D+%5Cleft%28+%5Cbegin%7Bmatrix%7D+%28s-%5Cxi_k%29%5E%7B%5Csigma_1%28%5Cxi_k%29%7D+%26+0+%26...%5C%5C+0+%26+%28s-%5Cxi_k%29%5E%7B%5Csigma_2%28%5Cxi_k%29%7D+%26...+%5C%5C+0%26...%26...%5C%5C+0+%26...%26%28s-%5Cxi_k%29%5E%7B%5Csigma_r%28%5Cxi_k%29%7D+++%5Cend%7Bmatrix%7D+%5Cright%29.%5C%5C

对于4.2的例子,G(s)的Smith-McMillan型如下:

equation?tex=M%28s%29%3D+%5Cleft%28+%5Cbegin%7Bmatrix%7D+s%28s%2B1%29%5E%7B-2%7D%28s%2B2%29%5E%7B-2%7D+%26+0%5C%5C+0+%26+s%5E2%28s%2B2%29%5E%7B-1%7D+%5C%5C++%5Cend%7Bmatrix%7D+%5Cright%29.%5C%5C

5 附录文件

zhimg_answer_editor_file_pdf.svg
SMITH–MCMILLAN FORMS.pdf
143.7K
·
百度网盘

——2020.07.17——

参考

  1. ^王久和,永智群.多项式系统矩阵Smith-McMillan标准型确定方法分析[J].华北科技学院学报,2002,4(2):14-15.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/527780.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python学习笔记(二) 数据类型及相关函数

本文主要介绍了python中注释方法、变量定义规则、数据类型及相关函数的内容 注释 注释方法: “”“ ”“” ’’’ ‘’’ 解释器位置特殊注释: #!/usr/bin/python3 #coding:utf-8 指定编码格式 #--coding:utf8-- 变量名称定义规则 python变量名称…

mysql explain insert_简述Mysql Explain 命令

MySQL的EXPLAIN命令用于SQL语句的查询执行计划(QEP)。这条命令的输出结果能够让我们了解MySQL 优化器是如何执行SQL语句的。这条命令并没有提供任何调整建议,但它能够提供重要的信息帮助你做出调优决策。参考官方文档地址:为什么用explain . 如果你的页面返回结果很…

没有varselect这个函数_C++的虚函数,虚析构函数,纯虚函数

修改日期:2020/9/6C的虚函数C的虚函数的特点就是动态绑定,它的意思是动态绑定,在运行的时候,通过引用和指针,可以用基类的类,引用继承该c类的派生类,虽然指针是基类,但实际上运行的是…

mysql数据库初识实训总结_MySQL(数据库)的初识

1.什么是数据库数据库(Database)是按照数据结构来组织、存储和管理数据的仓库2.什么是MySQLMySQL 是最流行的关系型数据库管理系统,在WEB应用方面 MySQL 是最好的RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。3.关系数…

jdk1.8要安装什么mysql_Window下安装JDK1.8+Tomcat9.0.27+Mysql5.7.28的教程图解

JDK1.8安装下载打开链接: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.下拉选择不同jdk版本,图示为window系统下载提示需登录账号可查看这个帖子Oracle账号.安装双击下载的安装包,按提示走就可以安装完成之后…

mysql 实例启动利用binlog恢复_mysql利用binlog进行数据恢复

mysql利用binlog进行数据恢复最近线上误操作了一个数据,由于是直接修改的数据库,所有唯一的恢复方式就在mysql的binlog。binlog使用的是ROW模式,即受影响的每条记录都会生成一个sql。同时利用了binlog基本配置和格式binlog基本配置binlog需要…

php mysql bootstart_PHP MySQL 创建数据库

PHP MySQL 创建数据库数据库存有一个或多个表。你需要 CREATE 权限来创建或删除 MySQL 数据库。使用 MySQLi 和 PDO 创建 MySQL 数据库CREATE DATABASE 语句用于在 MySQL 中创建数据库。在下面的实例中,创建了一个名为 "myDB" 的数据库:实例 (…

.net mysql 类库_(精华)2020年6月27日 C#类库 MySqlHelper(Ado.net数据库封装)

using EFCore.Sharding;using MySql.Data.MySqlClient;using System;using System.Collections.Generic;using System.Data.Common;namespace Core.Util{////// MySql数据库操作帮助类///public class MySqlHelper : DbHelper{#region 构造函数////// 构造函数////// 完整连接字…

ironpython console怎么用_如何在表單中插入ironpython控制台?

I want to make a winform by C#, and add a ironpython console window in it, like a multiline textbox. So I can write python program into it to do some operations in my Winform software.我想通過C#進行winform,並在其中添加一個ironpython控…

mysql修改客户端编码命令_mysql命令行修改字符编码

1、修改数据库字符编码mysql> alter database mydb character set utf8 ;2、创建数据库时,指定数据库的字符编码mysql> create database mydb character set utf8 ;3、查看mysql数据库的字符编码mysql> show variables like character%; //查询当前mysql数…

mysql 查看运行级别_运行级别及进程

/etc/rc.d/rc.sysinit由init进程调用执行完成设置网络、主机名、加载文件系统等初始化工作/etc/rc.d/rc脚本文件由init进程调用执行根据指定的运行级别, 加载或终止相应的系统服务/etc/rc.local脚本文件由rc脚本调用执行保存用户定义的需开机后自动执行的命令默认的7种运行级别…

中班机器人歌曲_机器人幼儿园大班音乐教案

机器人幼儿园大班音乐教案作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编为大家收集的机器人幼儿园大班音乐教案,供大家参考…

java 主线程等待_Java实现主线程等待子线程

本文介绍两种主线程等待子线程的实现方式,以5个子线程来说明:1、使用Thread的join()方法,join()方法会阻塞主线程继续向下执行。2、使用Java.util.concurrent中的CountDownLatch,是一个倒数计数器。初始化时先设置一个倒数计数初始…

java四个权限_java四种访问权限

引言Java中的访问权限理解起来不难,但完全掌握却不容易,特别是4种访问权限并不是任何时候都可以使用。下面整理一下,在什么情况下,有哪些访问权限可以允许选择。一、访问权限简介访问权限控制: 指的是本类及本类内部的…

java map removeall_Java删除Map中元素

前言&#xff1a;关于Java从Map中删除元素的使用&#xff0c;可以使用删除单个元素的事实Map.remove。示例&#xff1a;初始化一个Map对象Map map new HashMap<>();map.put(1, "value 1");map.put(2, "value 2");map.put(3, "value 3");m…

java中0x07_JAVA里0X00的表示

相信很多针对报文进行组织与拆解&#xff0c;在C、C里有memset的功能很容易完成字符串里填充0x00&#xff0c;在java里同样很容易做到&#xff0c;则是用\000,八进制来表示。测试代码如下&#xff1a;package j8583.example;import java.util.ArrayList;import java.util.Array…

java nio集群_java – Hazelcast:连接到远程集群

14:58:26.717 [main] INFO c.m.b.p.s.s.HazelcastCacheClient – creatingnew Hazelcast instance14:58:26.748 [main] INFO com.hazelcast.core.LifecycleService –HazelcastClient[hz.client_0_dev][3.2.1] is STARTING14:58:27.029 [main] INFO com.hazelcast.core.Lifecyc…

微信第三方扫描登录 java源代码_微信开放平台基于网站应用授权登录源码(java)...

1. 第三方发起微信授权登录请求&#xff0c;微信用户允许授权第三方应用后&#xff0c;微信会拉起应用或重定向到第三方网站&#xff0c;并且带上授权临时票据code参数&#xff1b;2. 通过code参数加上AppID和AppSecret等&#xff0c;通过API换取access_token&#xff1b;3. 通…

java性能优化方案_Java性能优化要点

Java性能优化要点本文介绍如何通过以下几点从Java中挤压出性能&#xff0c;该大部分经验来自于Netty作者。JITJava即时编译器当Java执行runtime环境时&#xff0c;每遇到一个新的类&#xff0c;JIT编译器在此时就会针对这个类别进行编译(compile)被优化成相当精简的原生型指令码…

java注解 源码_详解Java注解教程及自定义注解

详解Java注解教程及自定义注解更新时间&#xff1a;2016-02-26 11:47:06 作者&#xff1a;佚名 我要评论(0)Java注解提供了关于代码的一些信息&#xff0c;但并不直接作用于它所注解的代码内容。在这个教程当中&#xff0c;我们将学习Java的注解&#xff0c;如何定制注解&…