CDH集群离线配置python3环境,并安装pyhive、impyla、pyspark

背景:

项目需要对数仓千万级数据进行分析、算法建模。因数据安全,数据无法大批量导出,需在集群内进行分析建模,但CDH集群未安装python3 环境,需在无网情况下离线配置python3环境及一系列第三方库。

采取策略,使用外部联网linux环境创建python3虚拟环境,然后整体迁移集群环境

文章目录

          • 1. 外部机器和集群统一安装anaconda3环境[官网下载地址](https://www.anaconda.com/download#downloads)
          • 2. 外部机器安装pyhive、impyla、pyspark、ipykernel
          • 3. 环境迁移
          • 4. 问题解决(坏的解释器:没有那个文件或目录)
          • 5. jupyterlab 内核生成
          • 6. pyhive、impyla连接测试
          • 7. pyspark 对接CDH集群spark测试【pyspark版本要和集群CDH spark版本一致】

1. 外部机器和集群统一安装anaconda3环境官网下载地址
>> sh Anaconda3-2023.03-1-Linux-x86_64.sh
2. 外部机器安装pyhive、impyla、pyspark、ipykernel
>> conda create -n python3.7 python=3.7  # 创建py3.7虚拟环境,CDH集群spark2.4.0最高支持python3.7
>> conda activate python3.7       # 激活虚拟环境
>> pip install pyhive,impyla,pyspark # pip会自动安装thrif等依赖包,若报gcc等系统问题,具体问题百度分析
>> pip install ipykernel        # 创建jupyter内核使用,使用jupyterlab远程进行数据分析
>> pip install scikit-learn、lightgbm # 安装其他需要第三方库
3. 环境迁移
外部机器/anaconda3/envs>> zip -r python3.7.zip ./python3.7  # 压缩整个虚拟环境
集群/anaconda3/envs>> unzip python3.7.zip                  # 大功告成
4. 问题解决(坏的解释器:没有那个文件或目录)

迁移后 >> ./pip 提示 找不到python解释器

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NTKhm2QL-1692673902815)(C:\Users\zy\Desktop\集群离线配置python3+jupyterlab+pyspark+impyla.assets\image-20230801101207769.png)]

迁移后 ipykernel 提示找不到python解释器

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QvUlMG9n-1692673902816)(C:\Users\zy\Desktop\集群离线配置python3+jupyterlab+pyspark+impyla.assets\image-20230815102600598.png)]

解决:

进入envs/python3.7/bin 下,修改pip、pip3、ipykernel等命令内容,将第一行改为集群python对应路径。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jGdIrACZ-1692673902816)(C:\Users\zy\Desktop\集群离线配置python3+jupyterlab+pyspark+impyla.assets\image-20230801101924909.png)]

5. jupyterlab 内核生成
#1 激活、退出虚拟环境
>> conda activate python3.7    [conda deactivate]#2. 虚拟环境下
>> ipython kernel install --user --name=python3.7#3. 重启jupyter-lab 查看即可
>> nohup ./jupyter-lab --allow-root > /data/xx/anaconda3/log.out &# 备注:jupyterlab 服务由anaconda3主环境base创建
>> jupyter-lab --generate-config (配置远程访问)
>> vim jupyter_lab_config.py
'''
c.ServerApp.ip = '0.0.0.0'
c.ServerApp.port = 8888
c.ServerApp.passwd = 8888
c.ServerApp.notebook_dir = '/data/xx/anaconda3/data'
c.ServerApp.open_browser = False
c.NotebookApp.passwords = {'user1': 'sha1:user1_password_hash', # >> python -c "from notebook.auth import passwd; print(passwd())" 生成用户密码'user2': 'sha1:user2_password_hash','user3': 'sha1:user3_password_hash'
}
'''

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oZ45Demg-1692673902817)(C:\Users\zy\Desktop\集群离线配置python3+jupyterlab+pyspark+impyla.assets\image-20230822105553580.png)]

6. pyhive、impyla连接测试
from pyhive import hive
from impala.dbapi import connect
from impala.util import as_pandas## python 读取数仓第一种方式  hive:jbdc
# pyhive 连接
conn = hive.Connection(host='namenode',port=10000,database='库名')
cursor = conn.cursor()# 执行查询
cursor.execute('desc user_info')
col_name = [i[0] for i in cursor.fetchall()]
cursor.execute('select * from user_info limit 2')
data = cursor.fetchall()
print(pd.DataFrame(data=data,columns=col_name))# 关闭hive连接
cursor.close()
conn.close()## python 读取数仓第二种方式  impala:jbdc
# 连接impala
conn = connect(host='namenode',port=21050,database='库名')
cursor = conn.cursor()# 执行查询
cursor.execute('select * from user_info where name is not null')
data = as_pandas(cursor)

备注:使用pyhive和impyla 读取数据,还是读取到一台集群节点内存上,速度慢,占内存,且分析比较困难,适合小批量处理。如处理千万级数据,还是使用pyspark进行并行分析。

7. pyspark 对接CDH集群spark测试【pyspark版本要和集群CDH spark版本一致】
## python 分析大量数据 pyspark
import os
from pyspark import SparkContext,SparkConf
from pyspark.sql import SparkSessionimport warnings
warnings.filterwarnings(action='ignore')# 制定集群spark、hadoop家目录os.environ['SPARK_HOME'] = '/opt/cloudera/parcels/CDH-6.3.4-1.cdh6.3.4.p0.6751098/lib/spark'
os.environ['HADOOP_CONF_DIR'] = '/opt/cloudera/parcels/CDH-6.3.4-1.cdh6.3.4.p0.6751098/lib/hadoop'
os.environ['PYSPARK_PYTHON'] = './py3/bin/python' parameters = [('spark.app.name','sklearn'),('spark.yarn.dist.files','hdfs://namenode:8020/python3/python3.7.zip#py3')('spark.master','yarn'),('spark.submit.deploymode','client'),]conf = SparkConf().setAll(parameters)
#sc = SparkContext.getOrCreate(conf=conf)
spark = SparkSession.builder.config(conf=conf).enableHiveSupport().getOrCreate()
spark

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hcaapiDV-1692673902817)(C:\Users\zy\Desktop\集群离线配置python3+jupyterlab+pyspark+impyla.assets\image-20230822110440084.png)]
备注:一般会报
Permission denied: user=root, access=WRITE, inode=“/user/spark/applicationHistory”:spark:spark:drwxr-xr-x 权限错误,
这是因为写代码得用户时jupyter服务启动用户,而CDH 中hadoop、hive、spark 文件的用户分别为hdfs、hive、spark用户。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52674.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【UniApp开发小程序】私聊功能uniapp界面实现 (买家、卖家 沟通商品信息)【后端基于若依管理系统开发】

文章目录 效果显示WebSocket连接使用全局变量WebSocket连接细节 最近和自己聊天的用户信息界面效果界面代码最近的聊天内容太长日期时间显示未读消息数量显示 私聊界面界面展示代码实现英文长串不换行问题聊天区域自动滑动到底部键盘呼出,聊天区域收缩,聊…

报错:1 字节的 UTF-8 序列的字节 1 无效。

这里我的问题出现在BookMapper.xml中 java.lang.IllegalStateException: Failed to load ApplicationContextat org.springframework.test.context.cache.DefaultCacheAwareContextLoaderDelegate.loadContext(DefaultCacheAwareContextLoaderDelegate.java:125)at org.spring…

Hbase--技术文档--单机docker基础安装(非高可用)

环境准备-docker 配置Linux服务器华为云耀云服务器之docker安装,以及环境变量安装 java (虚拟机一样适用)_docker配置java环境变量_一单成的博客-CSDN博客 说明: 本文章安装方式为学习使用的单体hbase项目。主要是学习&#xff…

Unity之用Transform 数组加多个空物体-->简单地控制物体按照指定路线自动行驶

文章目录 **原理解释**:**带注释的代码**:实际运用 当你需要实现物体按照指定路线行驶时,你可以通过以下步骤来实现: 原理解释: 路径点:你需要定义一系列路径点,这些点将构成物体行驶的路线。每…

双指针算法总结

双指针算法大致有以下几个类型 对撞指针:一般用来处理两数和问题快慢指针: 一般在链表中用的比较多,如求链表中间结点,链表是否有环等,当然一些非链表题也会用到相关的思想区间划分: 将数组分成两个不同性质…

next.js报错点

next.js报错点 1.类型“{ children: ReactNode; }”与类型“IntrinsicAttributes”不具有相同的属性。2. 不能将类型“void[]”分配给类型“ReactNode”?3.useRouter only works in Client Components. Add the "use client" directive at the top of the…

【LeetCode 】数组简介

集合列表和数组 本文中介绍的概念为适用于所有编程语言的抽象理论,具体实现会由编程语言的不同而稍有差别。 具体介绍数组之前,我们先来了解一下集合、列表和数组的概念之间的差别。 集合 集合一般被定义为:由一个或多个确定的元素所构成的…

Python读取Excel:实现数据高效处理的利器

目录 一、Python读取Excel的常用库二、Python读取Excel的步骤三、具体案例和使用场景四、Python读取Excel的优势与其他编程语言比较 摘要 本文将介绍Python读取Excel的方法,并通过具体案例和使用场景展示如何实现数据高效处理。我们将介绍常用的Python库&#xff0c…

[docker][WARNING]: Empty continuation line found in:

报警内容: 下面展示一些 内联代码片。 //执行 sudo docker build ubuntu:v1.00 . [WARNING]: Empty continuation line found in:出现上述错误原因为18行多了一个 " \" 符号,去除即可

卷积神经网络实现天气图像分类 - P3

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍦 参考文章:Pytorch实战 | 第P3周:彩色图片识别:天气识别🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源&#xff…

【LeetCode75】第三十五题 统计二叉树中好节点的数目

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 给我们一棵二叉树,让我们统计这棵二叉树中好节点的数目。 那么什么是好节点,题目中给出定义,从根节点…

1782. 统计点对的数目

给你一个无向图,无向图由整数 n ,表示图中节点的数目,和 edges 组成,其中 edges[i] [ui, vi] 表示 ui 和 vi 之间有一条无向边。同时给你一个代表查询的整数数组 queries 。 第 j 个查询的答案是满足如下条件的点对 (a, b) 的数…

实现高效消息传递:使用RabbitMQ构建可复用的企业级消息系统

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

【Linux】动态库和静态库

动态库和静态库 软链接硬链接硬链接要注意 自定义实现一个静态库(.a)解决、使用方法静态库的内部加载过程 自定义实现一个动态库(.so)动态库加载过程 静态库和动态库的特点 软链接 命令:ln -s 源文件名 目标文件名 软链接是独立连接文件的,他…

Tomcat运行后localhost:8080访问自己编写的网页

主要是注意项目结构,home.html放在src/resources/templates下的home.html下,application.properties可以不做任何配置。还有就是关于web包的位置,作者一开始将web包与tabtab包平行,访问8080出现了此类报错: Whitelabel…

c++ qt--页面布局(第五部分)

c qt–页面布局(第五部分) 一.页面布局 在设计页面的左侧一栏的组件中我们可以看到进行页面布局的一些组件 布局组件的使用 1.水平布局 使用:将别的组件拖到水平布局的组件中即可,可以选择是在哪个位置 2.垂直布局 使用&…

【业务功能篇81】微服务SpringCloud-ElasticSearch-Kibanan-docke安装-入门实战

ElasticSearch 一、ElasticSearch概述 1.ElasticSearch介绍 ES 是一个开源的高扩展的分布式全文搜索引擎,是整个Elastic Stack技术栈的核心。它可以近乎实时的存储,检索数据;本身扩展性很好,可以扩展到上百台服务器,…

GB28181设备接入侧如何对接外部编码后音视频数据并实现预览播放

技术背景 我们在对接GB28181设备接入模块的时候,遇到这样的技术诉求,好多开发者期望能提供编码后(H.264/H.265、AAC/PCMA)数据对接,确保外部采集设备,比如无人机类似回调过来的数据,直接通过模…

Vue中使用element-plus中的el-dialog定义弹窗-内部样式修改-v-model实现-demo

效果图 实现代码 <template><el-dialog class"no-code-dialog" v-model"isShow" title"没有收到验证码&#xff1f;"><div class"nocode-body"><div class"tips">请尝试一下操作</div><d…

C语言易错点整理

前言&#xff1a; 本文涵盖了博主在平常写C语言题目时经常犯的一些错误&#xff0c;在这里帮大家整理出来&#xff0c;一些易错点会帮大家标识出来&#xff0c;希望大家看完这篇文章后有所得&#xff0c;引以为戒~ 一、 题目&#xff1a; 解答&#xff1a; 首先在这个程序中…