openCV实战-系列教程5:边缘检测(Canny边缘检测/高斯滤波器/Sobel算子/非极大值抑制/线性插值法/梯度方向/双阈值检测 )、原理解析、源码解读

打印一个图片可以做出一个函数:

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

1、Canny边缘检测流程

Canny是一个科学家在1986年写了一篇论文,所以用自己的名字来命名这个检测算法,Canny边缘检测算法这里写了5步流程,会用到之前《openCV实战-系列教程》的内容。 

  1. 使用高斯滤波器,以平滑图像,滤除噪声。
  2. 计算图像中每个像素点的梯度强度和方向。
  3. 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
  4. 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
  5. 通过抑制孤立的弱边缘最终完成边缘检测。

滤波:Canny检测算法使用的滤波器是高斯滤波器,通过滤波器可以对图像进行平滑处理。所以第一步需要过滤噪声,当进行检测的时候,肯定需要计算梯度,当遇到噪音点也会发生梯度的变化,所以为了更好的做到边缘检测,第一步需要去噪。

梯度:之前我们计算梯度的时候,只需要计算大小就行了,但是现在需要计算一下方向,所以梯度计算包括强度和方向。

非极大值抑制:计算的梯度大小有不同,比如在一个3*3的卷积核中,有些梯度比较小,相对大的就会保留下来,小的梯度就不会保留,只留下最明显的。 比如在人脸检测中,需要把人脸部分打出一个框的标识,计算的时候会计算出多个框,每个框都有一个概率值,最后只保留概率最大的那个框,而其他的框就会被抑制掉。

双阈值:计算边界的时候,会计算出多个候选值,在候选值中会再进行计算,只保留最接近真实的那个候选值边界。

完成边缘检测:将前面的结果都组合起来,完成边缘检测。

2、高斯滤波器

在前面的内容中已经讲解过,中间点比较大,越边缘的点越小,图中的H对高斯滤波器的滤波核进行归一化处理,然后再将滤波核H框住的区域A对应位置相乘再求和得到一个结果e。

3、梯度方向

Canny计算梯度使用的是Sobel算子(前面已经讲过这个内容), Sobel算子中需要分别计算水平和竖直两个方向的Gx和Gy(Gx和Gy的计算如上图),将这个结果融合到一起G计算方法如上图

梯度方向就是θ值,通过Gx和Gy计算得到,计算方法如上图。

4、非极大值抑制

4.1 方法A

如图所示,C点是目标像素点,需要判断C是不是一个极大值点,然后红色方框是它的周围的8个像素,蓝色线是C点的梯度方向,梯度方向和边界方向应该是垂直的关系。

如图所示,g1、g2、g3、g4、c都是一个像素点,而Q、Z是梯度方向与方框的交点,Q和Z不是一个像素是一个亚像素,使用线性插值法计算这个亚像素。 

首先g1、g2、g3、g4的梯度(梯度幅值,上一节讲到的梯度计算)都能够计算出来, Q就是g1和g2之间的,用M(dtmp1)表示Q点梯度(梯度幅值),它的计算方法在上图的公式已经给出,w和(1-w)都是代表的是一个权重,是Q点到g1、g2点的距离比上g1到g2的距离。得到权重乘上g1和g2的梯度就得到了Q点的梯度。

通过比较C、Q、Z的梯度值,如果C比Q、Z都要大,则说明C点是一个极大值,就可以将C点保留下来。

4.2 方法B

由于方法A太复杂了,将它简化成方法B,将一个像素周围的8个像素分解成8个方向。在方法1中如果过了g1和g4就不需要做插值了。方法B就是判断当前的方向和这8个方向那个最近就是哪个方向。然后这个方向上除了目标像素值之外还有两个点,如图所示假如分别是A、B、C,如果目标点A比B、C的梯度都要小那么A点就是极大值点。

5、双阈值检测 

 

maxVal即max value,意思是如果算出来的梯度值比maxVal(假如是100)大,那就是边界。

所以A点是边界,如果红色线下方还有一个D点,那么就舍弃这个点,这个点的梯度值比minVal小。

如果是在minval和maxval之间,就要分开讨论了,比如C点和边界点A连接在了一起,那么C点就可以判断为一个边界点,否则比如B点就不是了

6、边缘检测效果实现

这里的80和150就是minVal和maxVal

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

打印结果:

 所以minVal和maxVal的设定是比较重要的,第5节中如果对minval进行调整,那么提到的D点就有可能判定为边界点,因此会提取出更多的细节。

再导入一张图片,将两个参数设置的更大一些来对比:

img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

打印结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52639.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序开发教学系列(3)- 页面设计与布局

3. 页面设计与布局 在微信小程序开发中,页面的设计和布局是非常重要的。一个好的页面设计可以提升用户体验,并使小程序更加吸引人。本章节将介绍如何设计和布局微信小程序的页面。 3.1 页面结构和样式的创建和设置 在创建微信小程序页面时&#xff0c…

C#-Tolewer和ToUpper的使用

目录 简介: 好处:​ 过程: 总结: 简介: 字符串是不可变的,所以这些函数都不会直接改变字符串的内容,而是把修改后的字符串的值通过函数返回值的形式返回。 ToLower和ToUpper是字符串处理函数,用于将字符中的英文字母转换为小…

使用DPO微调Llama2

简介 基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback,RLHF) 事实上已成为 GPT-4 或 Claude 等 LLM 训练的最后一步,它可以确保语言模型的输出符合人类在闲聊或安全性等方面的期望。然而,它也给 NLP 引入了一些 RL 相关…

linux篇---使用systemctl start xxx启动自己的程序|开机启动|守护进程

linux篇---使用systemctl start xxx启动自己的程序|开机启动|守护进程 1、创建服务2、修改权限3、启动服务4、测试 机器:Nvidia Jetson Xavier系统:ubuntu 18.04 最近在使用symfony的console组件,需要执行一个后台的php进程,并且…

C++ Day5

目录 一、静态成员 1.1 概念 1.2 格式 1.3 银行账户实例 二、类的继承 2.1 目的 2.2 概念 2.3 格式 2.4 继承方式 2.5 继承中的特殊成员函数 2.5.1 构造函数 2.5.2析构函数 2.5.3 拷贝构造函数 2.5.4拷贝赋值函数 总结: 三、多继承 3.1 概念 3.2 格…

k8s--基本概念理解

必填字段 在要创建的 Kubernetes 对象的文件中.yaml,您需要设置以下字段的值: apiVersion- 您使用哪个版本的 Kubernetes API 创建此对象 kind- 你想创建什么样的对象 metadata- 有助于唯一标识对象的数据,包括name字符串、UID和可选namesp…

大数据领域都有什么发展方向

近年来越来越多的人选择大数据行业,大数据行业前景不错薪资待遇好,各大名企对于大数据人才需求不断上涨。 大数据从业领域很宽广,不管是科技领域还是食品产业,零售业等都是需要大数据人才进行大数据的处理,以提供更好…

Python调用文心一言的API

最近申请了文心一言的key,然后尝试调用了一下文心一言,这里使用一个简单的方式来调用文心一言: pip install paddle-pipelinesfrom pipelines.nodes import ErnieBotapi_key "your apply key" secret_key "your apply secr…

【python】Leetcode(primer-set)

文章目录 78. 子集(集合的所有子集)90. 子集 II(集合的所有子集)792. 匹配子序列的单词数(判断是否为子集)500. 键盘行(集合的交集)409. 最长回文串(set) 更多…

测试先行:探索测试驱动开发的深层价值

引言 在软件开发的世界中,如何确保代码的质量和可维护性始终是一个核心议题。测试驱动开发(TDD)为此提供了一个答案。与传统的开发方法相比,TDD鼓励开发者从用户的角度出发,先定义期望的结果,再进行实际的开发。这种方法不仅可以确保代码满足预期的需求,还可以在整个开…

IBM Db2 笔记

目录 1. IBM Db2 笔记1.1. 常用命令1.2. 登录命令行模式 (Using the Db2 command line processor)1.3. issue1.3.1. db2: command not found/SQL10007N Message "-1390" could not be retreived. Reason code: "3".1.3.2. db2 修改 dbm cfg 的时候报 SQL50…

C++ Day4

目录 一、拷贝赋值函数 1.1 作用 1.2 格式 二、匿名对象 2.2 格式 三、友元 3.1作用 3.2格式 3.3 种类 3.4 全局函数做友元 3.5类做友元 3.6 成员函数做友元 3.7注意 四、常成员函数和常对象 4.1 常成员函数 4.1.1格式 示例: 4.2 常对象 作用&…

shell学习笔记(详细整理)

主要介绍:主要是常用变量,运算符,条件判断,流程控制,函数,常用shell工具(cut,sed,awk,sort)。 一. Shell概述 程序员为什么要学习Shell呢? 1)需要看懂运维人员编写的Shell程序。 2…

恒运资本:什么是股票分红和基金分红?两者有什么区别?

出资者在进行股票出资和基金出资的时分,能够参与股票分红或许基金分红,可是许多新手对分红不是很了解。那么什么是股票分红和基金分红?两者有什么区别?下面就由恒运资本为大家分析: 什么是股票分红和基金分红&#xff…

LeGO-Loam代码解析(二)--- Lego-LOAM的地面点分离、聚类、两步优化方法

1 地面点分离剔除方法 1.1 数学推导 LeGO-LOAM 中前端改进中很重要的一点就是充分利用了地面点,那首先自然是提取 对地面点的提取。 如上图,相邻的两个扫描线束的同一列打在地面上如 点所示,他们的垂直高度差 ,水平距离差 ,计算垂直高度差和水平高度差…

n5173b是德科技keysight N5173B信号发生器

产品概述 是德科技/安捷伦N5173B EXG模拟信号发生器 当您需要平衡预算和性能时,是德科技N5173B EXG微波模拟信号发生器是经济高效的选择。它提供解决宽带滤波器、放大器、接收机等参数测试的基本信号。执行基本LO上变频或CW阻塞,低成本覆盖13、20、31.…

Dynamic CRM开发 - 实体字段(三)计算字段

在 Dynamic CRM开发 - 实体字段(一)中提到了实体字段的属性字段类型:有简单、计算、汇总三种,本篇幅通过一个示例讲解计算字段。 有这样一个需求:根据用户填写的出生日期,计算年龄。 1、创建一个“出生日期”字段,时间类型即可。 2、创建一个计算字段“年龄”,如下图…

ChatGPT:ChatGPT 的发展史,ChatGPT 优缺点以及ChatGPT 在未来生活中的发展趋势和应用

目录 1.ChatGPT 是什么 2. ChatGPT 的发展史 3.ChatGPT 优缺点 4.ChatGPT 在未来生活中的发展趋势和应用 5.ChatGPT经历了几个版本 1.ChatGPT 是什么 ChatGPT 是一个在线聊天机器人,可以与使用者进行语义对话和提供帮助。它可以回答各种问题,提供建议…

数据库(DQL,多表设计,事务,索引)

目录 查询数据库表中数据 where 条件列表 group by 分组查询 having 分组后条件列表 order by 排序字段列表 limit 分页参数 多表设计 一对多 多对多 一对一 多表查询 事物 索引 查询数据库表中数据 关键字:SELECT 中间有空格,加引…

按斤称的C++散知识

一、多线程 std::thread()、join() 的用法&#xff1a;使用std::thread()可以创建一个线程&#xff0c;同时指定线程执行函数以及参数&#xff0c;同时也可使用lamda表达式。 #include <iostream> #include <thread>void threadFunction(int num) {std::cout <…