数据分享|R语言PCA主成分、lasso、岭回归降维分析近年来各国土地面积变化影响...

全文链接:http://tecdat.cn/?p=31445

机器学习在环境监测领域的应用,着眼于探索全球范围内的环境演化规律,人类与自然生态之间的关系以及环境变化对人类生存的影响点击文末“阅读原文”获取完整代码数据)。

课题着眼于环境科学中的近年来土地面积变化影响的课题,应用机器学习的方法,进行数据处理与分析预测。数据的处理方法以及机器学习本身算法理论的学习和代码实现在各领域具有相同性,之后同学可以在其他感兴趣的领域结合数据进行分析,利用此课题所学知识举一反三。

相关视频

本文获取了近年来全球各国土地面积变化数据查看文末了解数据免费获取方式

outside_default.png

区域或局地尺度的气候变化影响研究需要对气候模式输出或再分析资料进行降尺度以获得更细分辨率的气候资料。

本文通过PCA主成分、lasso、岭回归对数据进行降维分析,既能起到对相关的预报因子限制的作用保证了预测结果的稳定性,又不至于掩盖预报因子的贡献以至于丧失模型预测的准确性。

读取数据

data=read.csv("E:/climate_change_download_0 (1).csv")  data=na.omit(data)  
# data[which(data=="..")]=0  
x=data[,c(7:ncol(data))]  
x[which(x=="..",arr.ind = T)]=0

数据清洗

x=data.frame(x)  
for(j in 1:ncol(x))x[,j]=as.numeric(x[,j])

主成分分析

pca <- x %*% v[,1:2]
scores <- X %*% loadings  
biplot(scores[,1:2], loadings[,1:2], xlab=rownames(scores),

outside_default.png


点击标题查阅往期内容

outside_default.png

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

outside_default.png

左右滑动查看更多

outside_default.png

01

outside_default.png

02

outside_default.png

03

outside_default.png

04

outside_default.png

发现最优主成分数

outside_default.png

outside_default.png

lasso 模型

对数据进行lasso模型筛选变量

转换数据类型

for(i in 1:ncol(X))X[,i]=as.numeric(X[,i])

找出有强影响的变量

summary(laa)## LARS/LAR  
## Call: lars(x = X, y = Y, type = "lar")  
##    Df    Rss       Cp  
## 0   1 6505.0 2041.608  
## 1   2 6472.4 2000.730  
## 2   3 6411.9 1923.292  
## 3   4 6056.4 1458.310  
## 4   5 6044.3 1444.434  
## 5   6 6010.9 1402.454  
## 6   7 5660.6  944.328  
## 7   8 5594.1  858.944  
## 8   9 5334.2  519.497

outside_default.png

outside_default.png

使用lasso方法排除回归模型中的多重共线性是有必要的。在对lasso模型参数的确定过程中,进行统计降尺度时将df设置为17时,cp值最小,因此我们选择1999-2006年的数据较为合理,既能起到对相关的预报因子限制的作用保证了预测结果的稳定性,又不至于掩盖预报因子的贡献以至于丧失模型预测的准确性。

使用ridge regression回归模型

outside_default.png

plot(lm.rid

outside_default.png

outside_default.png

选择GCV为100,带入岭回归模型的lambda中

outside_default.png

使用岭回归方法排除回归模型中的多重共线性是有必要的。在对岭回归模型参数α的确定过程中,本文认为在使用岭回归模型对地区土地面积进行统计尺度时将GCV设置为100较为合理,当α过小时,正则项起不到作用,回归模型各项系数分散,此时模型如普通最小二乘多元回归模型,出现过拟合现象,预测结果不稳定;当α过大时,模型各项系数收敛到一处,出现欠拟合现象,预测结果不准确;而当α合理确定时,平衡了模型的稳定性和准确性。

数据获取

在公众号后台回复“土地”,可免费获取完整数据。

outside_default.png

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

outside_default.png


outside_default.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言PCA主成分、lasso、岭回归降维分析全球气候变化对各国土地面积影响》。

点击标题查阅往期内容

基于R语言实现LASSO回归分析

R语言Lasso回归模型变量选择和糖尿病发展预测模型

【视频】Lasso回归、岭回归正则化回归数学原理及R软件实例

群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化

【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例

R语言Lasso回归模型变量选择和糖尿病发展预测模型

用LASSO,adaptive LASSO预测通货膨胀时间序列

MATLAB用Lasso回归拟合高维数据和交叉验证

群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化

高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据

Python高维变量选择:SCAD平滑剪切绝对偏差惩罚、Lasso惩罚函数比较

R使用LASSO回归预测股票收益

广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R使用LASSO回归预测股票收益

R语言如何和何时使用glmnet岭回归

R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化

Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

Python用ARIMA和SARIMA模型预测销量时间序列数据

outside_default.png

outside_default.png

outside_default.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52533.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

事件捕获和事件冒泡

事件捕获和事件冒泡与事件流有关系。 以下代码&#xff0c;点击 aa &#xff0c;控制台会打印什么呢&#xff1f; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content&q…

Delphi 开发手持机(android)打印机通用开发流程(举一反三)

目录 一、场景说明 二、厂家应提供的SDK文件 三、操作步骤&#xff1a; 1. 导出Delphi需要且能使用的接口文件&#xff1a; 2. 创建FMX Delphi项目&#xff0c;将上一步生成的接口文件&#xff08;V510.Interfaces.pas&#xff09;引入: 3. 将jarsdk.jar 包加入到 libs中…

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现GA-…

带着问题看SpringBoot

带着问题看SpringBoot 1、Spring容器具体是什么&#xff1f; 跟进run方法&#xff0c;context this.createApplicationContext()&#xff0c;得出容器是AnnotationConfigServletWebServerApplicationContext类。 SpringApplication.run(ServeroneApplication.class, args);…

小匠物联联合亚马逊云助力企业数智化出海

如何让家电企业出海产品数智化之路走上康庄大道&#xff1f;8月25日,亚马逊云科技[创新成长企业专列]这趟上云快车将开往宁波站&#xff0c;助力宁波的制造、软件等企业扬帆起航&#xff01;现场举办“亚马逊云科技助力企业出海数智沙龙”&#xff0c;小匠物联受邀出席。 会议现…

有没有好用的微信管理软件?解决企业营销管理痛点

企业营销管理痛点&#xff1a; 1、如何提高员工跟进客户的能力和效率&#xff1f; 2、怎么杜绝飞单私单工作怠慢等问题&#xff1f; 3、微信好友太多无法实现精准营销&#xff1f; 4、如何第一时间知道员工的违规行为&#xff1f; 多微信聚合聊天 多个微信号聚合在一个界面…

【Java 动态数据统计图】前后端对接数据格式(Map返回数组格式数据)六(120)

说明&#xff1a; 前端使用&#xff1a;vue3.0 前后端对接数据格式&#xff1a;无非就是前端把后端返回的数据处理为自己想要的格式&#xff0c;或者&#xff0c;后端给前端处理好想要的格式&#xff1b; 针对前后端的柱状图&#xff0c;趋势图等数据对接&#xff0c;前端一般需…

线性代数的学习和整理8:行列式相关

目录 1 从2元一次方程组求解说起 1.1 直接用方程组消元法求解 1.2 有没有其他方法呢&#xff1f;有&#xff1a;比如2阶行列式方法 1.3 3阶行列式 2 行列式的定义 2.1 矩阵里的方阵 2.2 行列式定义&#xff1a;返回值为标量的一个函数 2.3 行列式的计算公式 2.4 克拉…

数据库连接池druid 的jar包官网下载-最新版下载

进入官网Central Repository: com/alibaba/druid 往下滑 找到最新版点击进入 找到该jar包 点击即可下载

Redis 执行 RDB 快照期间,主进程可以正常处理命令吗?

执行了 save 命令&#xff0c;会在主进程生成 RDB 文件&#xff0c;由于和执行操作命令在同一个线程&#xff0c;所以如果写入 RDB 文件的时间太长&#xff0c;会阻塞主进程。 执行 bgsave 过程中&#xff0c;由于是交给子进程来构建 RDB 文件&#xff0c;主进程还是可以继续工…

Unity C# 之 Task、async和 await 、Thread 基础使用的Task的简单整理

Unity C# 之 Task、async和 await 、Thread 基础使用的Task的简单整理 目录 Unity C# 之 Task、async和 await 、Thread 基础使用的Task的简单整理 一、Task、async和 await 、Thread 基础概念 1、线程&#xff0c;多线程 2、Task 3、async &#xff08;await &#xff09;…

Go与Rust的对比与分析

Rust 和 Go 是两种现代语言&#xff0c;近年来获得了巨大的关注&#xff0c;每种语言都有自己独特的优势和权衡。在这篇文章中&#xff0c;我们将深入探讨 Rust 和 Go 之间的差异&#xff0c;重点关注性能、语言功能和其他关键因素&#xff0c;以帮助您针对您的开发需求做出明智…

决策树算法:随机森林民主算法【02/2】

决策树民主&#xff1a;随机森林算法 一、介绍&#xff1a; 记住您在阅读亚马逊上的所有评论后进行的最后一次购买&#xff0c;或者在查看 IMDb 评级后您观看的以前的电影。人类是社会动物&#xff0c;他人的意见和行为自然会影响我们。我们的决定在很大程度上取决于“群体智慧…

Linux常用命令——dhcpd命令

在线Linux命令查询工具 dhcpd 运行DHCP服务器。 语法 dhcpd [选项] [网络接口]选项 -p <端口> 指定dhcpd监听的端口 -f 作为前台进程运行dhcpd -d 启用调试模式 -q 在启动时不显示版权信息 -t 简单地测试配置文件的语法是否正确的&#xff0c;但不会尝试执行任何网络…

WSL2 Ubuntu20.04 配置 CUDA

前言 本文主要讲解如何在 Widnows 11 环境下的 WSL2&#xff08;Ubuntu20.04&#xff09;配置 CUDA 来启用 GPU 加速&#xff08;本文默认您已经在 Windows 上安装完成 Nvidia CUDA&#xff09; 配置流程 检查驱动 打开 GeForce Experience 检查驱动程序的情况&#xff0c;…

在Qt窗口中添加右键菜单

在Qt窗口中添加右键菜单 基于鼠标的事件实现流程demo 基于窗口的菜单策略实现Qt::DefaultContextMenuQt::ActionsContextMenuQt::CustomContextMenu信号API 基于鼠标的事件实现 流程 需要使用:事件处理器函数(回调函数) 在当前窗口类中重写鼠标操作相关的的事件处理器函数&a…

设计模式之中介者模式(Mediator)的C++实现

1、中介者模式的提出 在软件组件开发过程中&#xff0c;如果存在多个对象&#xff0c;且这些对象之间存在的相互交互的情况不是一一对应的情况&#xff0c;这种功能组件间的对象引用关系比较复杂&#xff0c;耦合度较高。如果有一些新的需求变化&#xff0c;则不易扩展。中介者…

Vue教程(五):样式绑定——class和style

1、样式代码准备 样式提前准备 <style>.basic{width: 400px;height: 100px;border: 1px solid black;}.happy{border: 4px solid red;background-color: rgba(255, 255, 0, 0.644);background: linear-gradient(30deg, yellow, pink, orange, yellow);}.sad{border: 4px …

腾讯云下一代CDN -- EdgeOne加速MinIO对象存储

省流 使用MinIO作为EdgeOne的源站。 背景介绍 项目中需要一个兼容S3协议的对象存储服务&#xff0c;腾讯云的COS虽然也兼容S3协议&#xff0c;但是也只是支持简单的上传下载&#xff0c;对于上传的时候同时打标签这种需求&#xff0c;就不兼容S3了。所以决定自建一个对象存储…

学习JAVA打卡第四十天

对象的字符串表示 在此类中我们讲过&#xff0c;所有的类都默认是java.lang包中object类的子类或间接子类。 Object类有一个public String toString&#xff08;&#xff09;方法,一个对象通过调用该方法可以获得该对象的字符串表示。一个对象调用toString法&#xff08;&…