戳蓝字“CSDN云计算”关注我们哦!
为什么要学习Spark?作为一个用来实现快速而通用的集群计算的平台。扩展广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询和流处理。Spark的一个重要特点就是能够在内存中计算,因而更快。即使在磁盘上进行的复杂计算,Spark依然比MapReduce更加高效。优势如此明显的Spark,是不是要好好学习一下呢?
1
Q:Spark是什么?
A:Apache Spark是用于大规模数据处理的统一分析引擎。
从右侧最后一条新闻看,Spark也用于AI人工智能
spark是一个实现快速通用的集群计算平台。它是由加州大学伯克利分校AMP实验室 开发的通用内存并行计算框架,用来构建大型的、低延迟的数据分析应用程序。它扩展了广泛使用的MapReduce计算
模型。高效的支撑更多计算模式,包括交互式查询和流处理。spark的一个主要特点是能够在内存中进行计算,及时依赖磁盘进行复杂的运算,Spark依然比MapReduce更加高效。
Q:spark的组成有哪些?
A:Spark组成(BDAS):全称伯克利数据分析栈,通过大规模集成算法、机器、人之间展现大数据应用的一个平台。也是处理大数据、云计算、通信的技术解决方案。
它的主要组件有:
SparkCore:将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。
SparkSQL:Spark Sql 是Spark来操作结构化数据的程序包,可以让我使用SQL语句的方式来查询数据,Spark支持 多种数据源,包含Hive表,parquest以及JSON等内容。
SparkStreaming: 是Spark提供的实时数据进行流式计算的组件。
MLlib:提供常用机器学习算法的实现库。
GraphX:提供一个分布式图计算框架,能高效进行图计算。
BlinkDB:用于在海量数据上进行交互式SQL的近似查询引擎。
Tachyon:以内存为中心高容错的的分布式文件系统。
Q:Spark的工作流程是什么样的呢?
A:通俗的解释就是:Spark是为了处理数据而生的平台,用一个比喻来形容它是餐馆。餐馆搭建好了后,就会有顾客,顾客的各种需求都得有人去处理,那么这时的Master就像是服务员,负责了解顾客的要求并把需求按照一定规律分配给厨师(Worker),这个顾客的需求就是一个APP,但这个APP不止包括了一个菜(job),整个订单里有很多个job,每个job都得由这些厨师处理,厨师的手就像是具体处理的Executor,负责所有的包括shuffle啊,filter啊,map啊,reduce等等具体的对原材料(RDD)的处理。driver就像是懒惰的厨师长,worker向它申请资源,同时它负责接收下面的人处理好的半成品材料或者完成品的菜品,但它自己并不干具体的活,如果是别人处理好的半成品,driver就将它分配给它认为有空的人接着处理(可能是map后要reduce的东西),直到目前的stage结束得到具体想要的结果,如果是直接就是想要的数据形式(一个job的完成),那么driver就通知master收货并反馈给顾客(可能是python程序,scala程序等等)。
Q:学了Spark有什么用呢?
A:首先说一下Spark的优势:
1、 更高的性能。因为数据被加载到集群主机的分布式内存中。数据可以被快速的转换迭代,并缓存用以后续的频繁访问需求。在数据全部加载到内存的情况下,Spark可以比Hadoop快100倍,在内存不够存放所有数据的情况下快hadoop10倍。
2、通过建立在Java、Scala、Python、SQL(应对交互式查询)的标准API以方便各行各业使用,同时还含有大量开箱即用的机器学习库。
3、与现有Hadoop 1和2.x(YARN)生态兼容,因此机构可以无缝迁移。
4、方便下载和安装。方便的Shell(REPL: Read-Eval-Print-Loop)可以对API进行交互式的学习。
5、借助高等级的架构提高生产力,从而可以讲精力放到计算上。
所以总结一下就是简单,快速,兼容性好,功能强大。不用再将注意力放在框架上,而是集中于业务逻辑,所以在大数据中Spark很受欢迎,学习Spark,符合市场需求。
Q:Apache Spark和Apache Storm之间有什么差异,用户应该根据什么来加以选择?
A:Apache Spark是一个内存中的分布式数据分析平台- 主要针对加快批量分析工作,反复机器学习的工作,交互式查询和图形处理。一个最主要区别是Spark使用弹性分布式数据集(RDD)。RDD是通过并行运算符来进行计算,并根据定义它是一成不变的。RDD允许Spark基于谱系信息容错的独特的形式。如果你对执行Hadoop MapReduce作业更快,那么Spark是一个很好的选择(即使在这里需要考虑内存的因素)。
Apache Storm是专注于流处理或者一些所谓复杂事件的处理。Storm实现容错的方法进行计算或者以流水线的方式多次计算一个事件,由于Storm进入一个需要特定格式的系统,那么可能导致它转换为一个非结构化的数据。
Storm和Spark存在相当不同的使用情况。Storm和Spark流更多是类似“苹果和苹果”比较。由于Spark的SSD本身是不可变的,Spark流实现在用户定义的时间间隔“定量”来实现更新,得到改造成自己的RDD的方法,从而Spark的并行操作人员可以对这些RDD进行计算。这是与Storm处理每个事的不同之处。
这两种技术之间的一个主要区别是,Spark进行数据的并行计算,而Storm则是任务的并行计算。无论是那种方法,都有它表现价值的一方面。
小伙伴们冲鸭,后台留言区等着你!
关于Spark,今天你学到了什么?还有哪些不懂的?除此还对哪些话题感兴趣?快来留言区打卡啦!留言方式:打开第XX天,答:……
同时欢迎大家搜集更多问题,投稿给我们!风里雨里留言区里等你~
福利
扫描添加小编微信,备注“姓名+公司职位”,加入【云计算学习交流群】,和志同道合的朋友们共同打卡学习!
推荐阅读:
漫话:如何给女朋友解释灭霸的指响并不是真随机"消灭"半数宇宙人口的?
【数据分析】盘点五一期间最受欢迎的几个景区
数据库不适合上容器云?| 技术头条
互联网出海十年
华为员工年薪 200 万!真相让人心酸!
天才程序员:25 岁进贝尔实验室,32 岁创建信息论 琥珀 极客宝宝 5天前
安全顾问反水成黑客, 靠瞎猜盗得5000万美元的以太币, 一个区块链大盗的另类传奇
人造器官新突破!美国科学家3D打印出会“呼吸”的肺 | Science
真香,朕在看了!