一个智能运维算法测试方法

摘要: 质量是企业长远生存的根基,是企业竞争的免死金牌。作为质量控制团队的一员,保障和提高所负责系统的质量,是工作的核心。而完善的测试覆盖,是保证质量的有效手段。

写在前面
质量是企业长远生存的根基,是企业竞争的免死金牌。作为质量控制团队的一员,保障和提高所负责系统的质量,是工作的核心。而完善的测试覆盖,是保证质量的有效手段。

测试按类型来分,分为功能测试和性能测试。功能测试,按照测试金字塔模型,又分为三种:单元测试、接口测试和 UI 测试。单元测试是方法级别的测试,是保证代码质量的基础,一般由开发同学自行完成。接口测试和 UI 测试是端到端的测试,需要覆盖完整的业务场景,一般由测试同学通过自动化的方式来完成覆盖,并加入持续集成中,保证所有提交的代码都不会影响产品的正常功能。

但接口测试和 UI 测试无法覆盖所有测试需求,比如算法。算法作为机器学习和人工智能的基础,其有效性至关重要,特别是在集团智能化运维的大潮下,各种算法层出不穷,寻找有效的方法对算法的优劣进行评测就成了测试团队的职责。但是算法不需要验证接口,也不需要测试 UI,而是需要建立一套有针对性的评测指标,并想办法得到被测算法的各项指标值来对算法进行评价。

算法测试

图片描述

算法测试的流程其实很简单,只有三步:

构造输入
使用构造的输入来运行算法
获得输出,并使用算法的输出来计算各项指标值,对算法做出评价

把算法作为一个黑盒,测试需要做的就是完成第一步和第三步。其中最重要的又是第一步,因为输入确定了,输出基本就是确定的,不同点只是在于你如何分析而已。那么如何构造输入呢?有两种方法,一是手工构造数据集,优点是较简单,可以随意构造,缺点是无法反应线上的真实情况,会出现大量的漏测场景。还有一种方式是直接使用线上的数据,优点是场景覆盖全面,缺点是数据收集较为耗时。如果能构造一个测试系统,使得线上数据的收集=》算法运行=》输出评价成为一个完全自动化的流程,那么可以极大的提高算法测试的效率和有效性。

下面将以无人值守发布系统的算法测试为例,介绍一下上述测试思路的一种实现方法。

无人值守发布

无人值守发布(RiskFree)着力与解决快速分析新版本的应用的各项指标以识别异常,拦截有问题的发布,降低发布导致的故障率。无人值守发布系统的输入主要有三个:ali360 的系统监控和基础监控数据、sunfire 的业务监控数据、a3 的日志分析数据。通过算法对这三个系统的输入数据进行分析,得到异常分,对于异常分较高的应用触发拦截。

故障回放测试

要对无人值守发布系统进行测试,除了保证其基本功能外,最重要的是要对其算法的有效性进行验证,主要落在两个指标上:准确率和召回率:
准确率 = 有效拦截 (潜在故障)/ 所有拦截
召回率 = 有效拦截 / 所有应该拦截的发布单
测试需要构造一个数据集,使得通过该输入得到的输出可以正确的反映算法的准确率和召回率。给开发一个准确的参考,验证自己的优化是否有效。

输入数据集由各个监控系统的输出数据构成。且不说监控系统输出的数据量大且复杂,手工构造数据效率底下且工作量大。就算是最后手工成功构造了数据集,也无法保证数据的有效性和覆盖率。在测试流程里的准确率和召回率高,并不意味着在线上可以有效拦截故障,这就使测试的价值大打折扣。

所以最有效的方法就是直接录制线上的监控数据,并用该数据集做回放来验证算法的效果。而且为了提高测试效率,解放双手,需要将数据的选择、收集、回放、结果展示做成一个自动化流程,使得开发可以一键触发,选择任意想要的数据集进行回放。

对于无人值守发布系统来说,一次发布对应一个 plan。所以基本思路就是录制该 plan 运行过程中三个监控系统产生的所有数据,并分别存放在三个表中。然后调用 riskfree 提供的通过 planId 触发分析的回放接口,返回对应的录制数据,完成回放。最后在 plan 分析结束后收集结果,进行展示。下面将录制和回放模块分开做详细讲解。

录制流程

图片描述

第一步是选择想要录制的 plan。本文中选择的是所有在发布过程中触发了拦截的 plan。为了计算回放之后的准确率和召回率,需要对这些 plan 进行打标,标记哪些是有效拦截,哪些是误拦截。标记标准为:无人值守触发拦截 && 发布单被手工关闭或回滚=有效拦截,其他的都是误拦截。这种方法理论上可以保证标记的准确性。该任务由定时任务来完成,在每天的零点对前一天的发布单进行过滤,通过对无人值守发布和海狼的数据库的数据分析,计算出需要选择的 plan 和对应的标记,存储到本地的数据库中。

选好 plan 之后,需要将该 plan 分析过程中获取的三个监控系统的数据拉取下来并分别保存。流程很简单,只要把在分析过程中获取到的监控数据全部保存下来即可。由 riskfree 提供录制接口,通过 planId 来重新触发分析,在分析过程中将得到的监控数据通过录制模块提供的 API 存储到录制模块的 DB 中。因为监控系统会存储一个月左右的历史数据,所以只要录制及时,所有对应得监控数据都可以获取到。录制和回放可以使用同一个接口,通过配置项来判断本次触发是录制还是回放。当然录制模块需要做好幂等操作,确保不会有重复得数据被插入到数据集中。

录制模块提供了两种触发录制的方式。一是定时任务,会在每天的凌晨一点将第一步中筛选出的 plan 的监控数据收集下来;二是接口触发方式,可以指定某些 plan 或某个时间段内的 plan 进行录制,主要是重新录制在定时任务中录制失败的 plan。

回放流程

图片描述

1.录制完成以后,本地的 DB 里会包含各个 plan 对应的所有监控数据,回放时只要将这些数据准确的返回给 riskfree 系统即可。为了完全拟合对监控系统的调用方式,需要提供一个 mock 层,分别 mock 对基础监控、业务监控和日志监控接口的调用。同样的输入,mock 接口和线上真实接口返回的数据必须完全一致。实际回放时,在 aone 的配置项里将监控系统的 URL 替换成 mock 层的 URL 即可。

2.riskfree 的上层是运行层。运行层封装了各种回放模式,包括按 planId 回放、按监控类型回放、按时间段回放、快速回放等等。开发可以通过接口对各种回放模式进行一键触发。运行层的底层是一个并发层,可以配置并发回放 Plan 的个数。通过并发的方式不仅可以压缩回放时间,提高测试效率。而且可以验证在高并发的情况下算法的性能表现。

3.最上面一层是展示层,展示方式包括钉钉提醒、测试报告和趋势图。每一次回放的开始和结束时会有钉钉提醒,结束时的钉钉提醒包含测试报告的链接。测试报告分为概述和详细信息两个部分。概述部分包括回放工单总数、有效拦截数、误拦截数、漏拦截数、准确率和召回率,六个指标,每一个指标都是一个锚点,可以直接跳转到详细信息中的对应位置。详细信息包括五个部分:漏拦截 Plan 详情、误拦截 Plan 详情、与上次回放结果不同的 plan 详情、与线上运行结果不同的 plan 详情以及全部回放的 plan 详情五个部分。每一个详情部分都是一个表格,包括线上 PlanId、回放后产生的线下 planId、本次运行结果、上次运行结果、本次回放耗时、上次回放耗时、对应发布单状态等等多个字段。概述信息和详细信息中的各个对比字段使得开发可以迅速准确的得到本次优化的结果,并快速定位问题。下图是某次回放结果的部分截图。

图片描述

4.为了直观的展示历次算法优化的效果,对相同数据集、相同监控类型的回放结果自动生成趋势图,并在测试报告中生成对应的链接。下图是历次对 11-03 到 11-10 时间段的 a3 日志分析数据进行回放的趋势图。

图片描述

写在最后

算法测试的重中之重是构造数据集,而线上真实的数据集往往比手工构造的数据集更有代表性。上文提到的录制+回放的方法只需稍加变通即可应用在各个算法评测项目中。只要将录制和回放串成一个自动化的流程,即可一劳永逸,不必再担心数据集的构造和更新了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/523082.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里巴巴1682亿背后的“企业级”高效持续交付

摘要: 在2017北京云栖大会上,阿里巴巴高级技术专家陈鑫(花名神秀),给大家带来了《1682亿背后的企业级高效持续交付》,引起强烈共鸣。神秀从技术负责人关心的研发流程混乱、质量无法保障、环境管理低效、资源…

星形和雪花模型_数据仓库多维数据模型设计

建设数据模型既然是整个数据仓库建设中一个非常重要的关键部分,那么,怎么建设我们的数据仓库模型就是我们需要解决的一个问题。这里我们将要详细介绍如何创建适合自己的数据模型。数据仓库建模方法大千世界,表面看五彩缤纷,实质上…

可视化流程设计器 Activiti Designer

插件安装地址:http://activiti.org/designer/update 插件使用手册:http://www.activiti.org/userguide/index.html#activitiDesigner Intellij IDEA版本: http://plugins.jetbrains.com/plugin/7429?pridea (或在插件中心搜索actiBPM)

FreeWheel是一家怎样的公司?| 人物志

戳蓝字“CSDN云计算”关注我们哦!人物志:观云、盘点、对话英雄。以云计算风云人物为核心,聚焦个人成长、技术创新、产业发展,还原真实与鲜活!作者 | 孙浩峰在知乎上有一个帖子,题目就是“FreeWheel是一家怎…

2017双11技术揭秘—千亿级流量来袭,如何用硬件加速技术为CPU减负?

摘要: 在刚过去的2017年双11零点流量高峰的考验下,主站接入层Tengine Gzip硬件加速机器运行平稳、同等条件下相比于未开启QAT加速的机器性能提升21%左右。 作者:王发康(毅松) 主站接入层是阿里2015年全站HTTPS项目诞生…

STS安装 activiti-designer-5.18.0插件

方式一:在有网络的情况下,安装流程设计器步骤如下: 1、点击eclipse上方工具栏的Help,选择Install New Software 2、弹出如下窗口,然后填写插件名称和安装地址 Name: Activiti BPMN 2.0 designer Location: http://a…

2017双11技术揭秘—分布式缓存服务Tair的热点数据散列机制

摘要: Tair是阿里巴巴集团自研的弹性缓存/存储平台,在内部有着大量的部署和使用。Tair的核心组件是一个高性能、可扩展、高可靠的NoSQL存储系统。目前支持MDB、LDB、RDB等存储引擎。本文基于Tair的存储和访问原理,对缓存的读写热点问题进行讨…

5G精华问答 | 5G与LTE有什么关系?

1G时我们用手机打电话,2G时我们能互发短信、看文字信息,3G时上网看图片,而4G时我们看视频和直播,从1G到4G,不仅信号越来越好,安全性越来越高,上网也越来越快了。1Q:5G关键指标A&…

2017双11技术揭秘—双十一海量数据下EagleEye的使命和挑战

摘要: EagleEye作为阿里集团老牌的链路跟踪系统,其自身业务虽不在交易链路上,但却监控着全集团的链路状态,特别是在中间件的远程调用上,覆盖了集团绝大部分的场景,在问题排查和定位上发挥着巨大的作用&…

2017双11技术揭秘—TDDL/DRDS 的类 KV 查询优化实践

摘要: 性能优化是企业级应用永恒的话题,关系型数据库查询优化更是如此。在前台核心业务场景中,类 KeyValue 查询(以下简称类 KV 查询)是非常常见的,并且在应用总 SQL 流量占比很高,如果仅在SQL层面进行进一步优化会非常困难&#…

揭密|淘宝服务端千万级高并发架构的演进之路

戳蓝字“CSDN云计算”关注我们哦!作者 | huashiou来源 | https://segmentfault.com/a/11900000186261631、概述本文以淘宝作为例子,介绍从一百个并发到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术&#…

VMware安装Centos7超详细过程(图文)

软件版本链接VM14后续补充CentOS7http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1804.iso参考链接https://blog.csdn.net/babyxue/article/details/80970526文章目录一、虚拟机准备① 打开VMwear选择新建虚拟机② 典型安装与自定义安装③ 虚拟机兼容…

2017双11技术揭秘—X-DB支撑双11进入分布式数据库时代

摘要: 今年双11是X-DB的第一次大考,本次双11X-DB服务于天猫/淘宝核心交易系统、核心物流系统、核心IM系统,经受了零点业务32.5万笔/秒峰值的性能考验,同时X-DB支撑起了新一代单元化架构. 作者:章颖强(江疑)…

ifix虚拟服务器,ifix的客户端和服务器

ifix的客户端和服务器 内容精选换一换介绍使用同一VPC内弹性云服务器ECS上的C# Redis客户端连接Redis实例的方法。更多的客户端的使用方法请参考Redis客户端。已成功申请Redis实例,且状态为“运行中”。已创建弹性云服务器,创建弹性云服务器的方法&#…

一张图看懂阿里云网络产品【四】NAT网关

摘要: NAT网关(NAT Gateway)是一款企业级的VPC公网网关,提供SNAT和DNAT功能,支持多IP,支持共享带宽,具备Tbps级别的集群转发能力和Region级别的高可用性。

Failure to find com.oracle:ojdbc6:jar:11.2.0.1.0

报错原因:oracle的ojdbc.jar是收费的,maven的中央仓库是没有的,需要下载到本地,然后打包进maven仓库 1.下载ojdbc6-11.2.0.1.0.jar包 http://central.maven.org/maven2/com/jslsolucoes/ojdbc6/11.2.0.1.0/ojdbc6-11.2.0.1.0.ja…

c++文件流读取一行_「软帝学院」Java挑战者专栏:IO流详解2

软帝学院笔记Day18IO流(字符流FileReader)1.字符流是什么字符流是可以直接读写字符的IO流字符流读取字符, 就要先读取到字节数据, 然后转为字符. 如果要写出字符, 需要把字符转为字节再写出.2.FileReaderFileReader类的read()方法可以按照字符大小读取FileReader fr new FileR…

“AI捡垃圾”上热搜了!46城垃圾分类将投200亿,你怎么看?

自动上海开始推行垃圾分类,上海人民就成为了广大网友的快乐源泉。据说有一位“机智”的程序员由于加班太忙,把垃圾寄快递到昆山去扔。快递员表示:天才操作!并拒绝了他,然后花半小时教他垃圾分类。在哈哈哈的同时&#…

解决“Failure to find com.oracle:ojdbc6:jar”,手动安装ojdbc的jar包到maven私仓

在使用mvn进行编译的时候,遇到如下错误: Could not resolve dependencies for project com.bairong.platform:auth:jar:3.0: Failure to find com.oracle:ojdbc6:jar:11.2.0.1.0 in http://maven.aliyun.com /nexus/content/groups/public/ was cached …