【核磁共振成像】方格化重建

目录

  • 一、缩放比例
  • 二、方格化变换的基础
  • 三、重建时间
  • 四、方格化核


一、缩放比例

  对于笛卡尔K空间直线轨迹数据可直接用FFT重建,而如果K空间轨迹的任何部分都是非均匀取样的 可用DFT直接重建,有时称为共轭相位重建,但此法太慢不实用。把数据再取样到直线格使能FFT重建要快得多普遍应用的内插方法是把数据与一个平滑函数卷积再取样,这个 重建过程(包括FFT) 被称为 方格化
  方格化在K空间中用一个卷积转换输入数据到一个均匀直线格数据集,因自选密度本身是紧支的(即有限区域外都是零),只要测量值是大于或等于奈奎斯特频率采样的,任意位置的K空间值都可以被测量值的sinc内插精确计算(即测量的K空间值与sinc函数卷积)。
  sinc内插的缺点是sinc函数不是紧支的。因此,在每个新K空间位置计算K空间值,要求sinc函数被所有测量的数据乘,导致比较长的计算时间
  在方格化中,sinc函数被一个紧支函数(方格化核)取代以节省计算时间K空间数据与方格化核卷积等价于图像被核的FT乘
  sinc卷积方格化导致些许图像质量损失,因为再取样卷积的K空间导致一个带有混叠的图像。通常通过K空间过取样以增大FOV(把直线混叠的复制进一步推离开推向),以降低混叠,然后在FT后放弃额外的FOV。
在这里插入图片描述
  左为模拟的spiral扫描图像,显示有混叠伪影
  混叠延申到无限远,即使显示的截面有限(方框是扫描中指定的FOV)。
  右为从左图(尚无直线再取样)的K空间数据的内插产生的图像
  如果对应于左图的K空间数据与一紧支函数而不是sinc卷积,混叠伪影就不会被截去

  径向投影MR数据也可以用CT中常用的滤波背投影算法,但此法在MRI中不受欢迎。对一个离散数据集再取样问题已经发展了许多方法,直接内插会导致伪影基于卷积的方法比如方格化在MRI中被广泛使用,因为它比其他方法快,并且能给出足够好的图像质量。

  所谓 两个函数的卷积,本质上就是先将一个函数翻转,然后进行滑动叠加在连续情况下叠加指的是对两个函数的乘积求积分在离散情况下就是加权求和,为简单起见就统一称为叠加。卷积的“卷”,指的的函数的翻转,从 g(t) 变成 g(-t) 的这个过程;同时,“卷”还有滑动的意味在里面。如果把卷积翻译为“褶积”,那么这个“褶”字就只有翻转的含义了。卷积的“积”,则指的是积分/加权求和

  以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。在图像处理中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。
  进行“卷”(翻转)的目的其实是施加一种约束,它指定了在“积”的时候以什么为参照。在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。


二、方格化变换的基础

  方格化所需要的步骤为:
  (1)对各个输入数据点计算K空间位置和密度补偿。
  (2)计算方格化核及其反傅里叶变换,存储方格化核作为一个查找表或者对各个输入、输出数据样本存储值。
  (3)如果需要,从输入数据减去基线
  (4)准备一个待输出K空间矩阵,对各个输入数据样本在输入点的紧支距离内找出所有均匀直线输出位置。
  (5)应用一个K空间窗和符号交替到再取样的直线K空间数据上。
  (6)反傅里叶变换均匀直线再取样的K空间数据上。
  (7)如果K空间过取样用于降低混叠,提取图像的中间位置相应于所希望的最终FOV
  (8)用方格化核的反傅里叶变换除以中间像
  (9)如果需要实像或虚像,进行符号交替
  (10)计算最终图像,比例缩放。
在这里插入图片描述

方格化流程,包括用FFT的图像重建

  方格化是一个局部过程,只需在原取样点附近执行
  为了节省计算时间,方格化核值通常不再对各个输出点计算。方格化核值只对相对小数量点计算,比如256点,并存在一个查找表中。如果同样的K空间轨迹用于重复的重建,并且有足够多存储器的话,第一个像之后所有像的重建时间可通过查表而大大节省


三、重建时间

   方格化重建 可分为三步:卷积、FFT和被方格化核的IFT除
  卷积步乘法运算次数输入数据样本数Ns乘以位于各输入样本的距离w内的均匀直线位置数。如果w是用均匀直线样本的单位给定的,乘运算次数对于1D方格化是wNs,对2D方格化是w^2Ns,以此类推。

  例如 在傅里叶变换中,一个复数函数的实部和虚部分别对应着信号的振幅和相位。如果一个信号的傅里叶变换F(k)的共轭F*(k)等于F(-k),那么这个信号的相位是对称的,即F(k)和F*(k)相位相等。相位信息可以用来描述信号的时间演化和频率成分

  受敲击的鼓面振幅沿半径方向的分布就是一个贝塞尔函数(考虑正负号)。实际上,这些振动是各阶贝塞尔函数的叠加

  根据图像阵列的特性,对其按下列步骤进行FFT变换
  (1)将图像数据阵列变换为按列存储,即从下到上,从左到右;
  (2)对每一列图像数据进行1-D FFT;
  (3)将按列处理后的数据结果存储,并对它们按原图像阵列的形式,即按行重新存储;
  (4)对重新排列的数据逐行进行1-D FFT;
  (5)将每行处理后的数据存储起来,即得到2-D 数字图像FFT结果。

  关于离散傅里叶变换变换:
  (1)实数信号变换的结果X[k]是一组复数,里面一半数据和另一半是共轭的。意味着N点DFT,只有N/2的数据是含有有用信息的。
  (2)用DFT的结果如何做频谱分析,即在采样频率为fs的情况下, x[n]的n只是一个离散的数值。


四、方格化核

  最佳1D方格化核g(K)是Kaiser-Bessel函数,在终像最逼近理想像(例如用共轭相位重建)的意义上说,Kaiser-Bessel函数作为方格化核能给出最佳结果
在这里插入图片描述
  (a)图为Kaiser-Bessel函数(任意单位)作为K空间距离(以K空间为单位)的函数
  (b)图为Kaiser-Bessel函数(任意单位)的反傅里叶变换曲线作为图像视野L的函数,Kaiser-Bessel函数参数w=4,b=8

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52281.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

window如何实时刷新日志文件

1 安装windows git 下载地址:Git - Downloading Package (git-scm.com) 2 打开git bash 输入tail.exe -f 日志文件路径

CSS3盒模型+flex

1.盒模型 标准盒模型: wwidthpaddingborderhheightpaddingborder 怪异盒模型(ie盒模型) wwidth包含了(paddingborder)hheight包含了(paddingborder) 2.CSS3弹性盒(重点新版弹性盒) 弹性盒: 设置为弹性盒后,父元素为容器,子元素为项目弹性盒中存在两根轴,默认水平为主轴,垂…

浅谈APP自动化测试工具的优势和应用

随着移动应用市场的迅速发展,APP的质量和性能变得至关重要。为了确保APP的稳定性和用户体验,自动化测试工具成为开发者和测试团队的关键利器。那么,APP自动化测试工具的优势和应用是什么?下面,就跟随掌控智能小编一起来看看具体介…

LeetCode——二叉树篇(九)

刷题顺序及思路来源于代码随想录,网站地址:https://programmercarl.com 目录 669. 修剪二叉搜索树 108. 将有序数组转换为二叉搜索树 538. 把二叉搜索树转换为累加树 669. 修剪二叉搜索树 给你二叉搜索树的根节点 root ,同时给定最小边界…

【Jetpack】Navigation 导航组件 ④ ( Fragment 跳转中使用 safe args 安全传递参数 )

文章目录 一、页面跳转间的传统的数据传递方式1、传统的数据传递方式 - Bundle 传递数据1、Navigation 组件中的 Bundle 数据传递2、传统数据传递实现步骤3、FragmentA 完整代码示例4、FragmentB 完整代码示例5、执行结果 2、使用 Bundle 传递数据安全性差 二、页面跳转间的传统…

TCP的可靠性之道:确认重传和流量控制

TCP 全称为 Transmission Control Protocol(传输控制协议),是一种面向连接的、可靠的、基于字节流的传输层通信协议,其中可靠性是相对于其他传输协议的优势点。TCP 为了确保数据传输的可靠性主要做了以下几点: 发送确…

电脑文件删除了可以找回吗?分享一种简单恢复删除电脑文件办法!

电脑文件删除了可以找回吗?可以。在原理上讲电脑删除的文件是有希望恢复的,因为操作系统在删除文件的时候并会不会立刻将文件彻底删除。当文件被删除的时候,其文件记录被删除,并且被文件占用的磁盘空间被标记为空闲。 这样对于用户…

1.1 VMware Workstation与Kali的安装和配置1

资源见专栏第一篇文章https://blog.csdn.net/algorithmyyds/article/details/132457258 安装VMware 不多加赘述,直接按顺序安装即可。 有以下需注意的地方: 1.建议选择增强型服务; 2.不要加入体验改进计划。是否开启提示更新看你的想法&…

Nvidia Jetson 编解码开发(7)Jetpack 4.x版本Multimedia API 硬件编码开发--输出端对接ROS publish

1.前言 Nvidia Jetson 编解码开发(6)Jetpack 4.x版本Multimedia API 硬件编码开发--输入端对接Camera V4L2采集_free-xx的博客-CSDN博客 基于上篇基于开发 需求: (1)2路Camera采集 + H265编码 (2)2路编码完的H265数据通过ROS 发布出去,上位机播放 2. 开发记录 2…

【linux】2 make/Makefile和gitee

文章目录 一、Linux项目自动化构建工具-make/Makefile1.1 背景1.2 实例代码1.3 原理1.4 项目清理 二、linux下第一个小程序-进度条2.1 行缓冲区2.2 进度条 三、git以及gitee总结 ヾ(๑╹◡╹)ノ" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)ノ" 一…

盛最多水的容器——力扣11

int maxArea(vector<int>& height) {int l=0, r=height.size()

半导体低压热氧工艺中的真空度精密控制解决方案

摘要&#xff1a;在目前的各种半导体材料热氧化工艺中&#xff0c;往往需要对正负压力进行准确控制并对温度变化做出快速的响应&#xff0c;为此本文提出了热氧化工艺的正负压力控制解决方案。解决方案的核心是基于动态平衡法分别对进气和排气流量进行快速调节&#xff0c;具体…

SpringBoot 微人事 职称管理模块(十三)

职称管理前端页面设计 在职称管理页面添加输入框 export default {name: "JobLevelMarna",data(){return{Jl:{name:""}}}}效果图 添加一个下拉框 v-model的值为当前被选中的el-option的 value 属性值 <el-select v-model"Jl.titlelevel" …

Spring cache整合Redis使用介绍

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

【网络教程】如何创建/添加钉钉机器人以及如何获取机器人的Token/Secret

文章目录 创建钉钉机器人添加钉钉机器人获取机器人的Token/Secret相关网站创建钉钉机器人 这里以PC端的操作为例,按照如下操作进行 访问 钉钉开放平台选择机器人选项卡,点击右上角的创建应用,这里会有一个弹窗,我这里选择的是继续使用旧版,如图按照要求填写相关信息创建自…

第六次作业 运维高级 docker容器

1.安装docker服务&#xff0c;配置镜像加速器 卸载旧版本 yum remove docker docker-common docker-selinux docker-engine使用yum源安装 &#xff08;1&#xff09;安装Docker所需要的一些工具包 yum install -y yum-utils&#xff08;2&#xff09; 建立Docker仓库 (映射…

Java——它要求用户输入一个整数(实际上是一个字符串),然后计算该整数的平方值,并将结果输出。

这是一个Java程序&#xff0c;它要求用户输入一个整数&#xff08;实际上是一个字符串&#xff09;&#xff0c;然后计算该整数的平方值&#xff0c;并将结果输出。程序的基本流程如下&#xff1a; 首先&#xff0c;声明并初始化变量data和result&#xff0c;它们的初始值都为…

扁线电机定子转子工艺及自动化装备

售&#xff1a;扁线电机 电驱对标样件 需要请联&#xff1a;shbinzer &#xff08;拆车邦&#xff09; 新能源车电机路线大趋势&#xff0c;自动化装配产线需求迫切永磁同步电机是新能源车驱动电机的主要技术路线。目前新能源车上最广泛应用的类型为永磁同步电机&#xff0c…

W5500-EVB-PICO进行UDP组播数据回环测试(九)

前言 上一章我们用我们的开发板作为UDP客户端连接服务器进行数据回环测试&#xff0c;那么本章我们进行UDP组播数据回环测试。 什么是UDP组播&#xff1f; 组播是主机间一对多的通讯模式&#xff0c; 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。组播源将…

如何搭建智能问答FAQ的底层数据基础呢?

搭建智能问答FAQ的底层数据基础是构建一个高效和准确的问答系统的关键。在这篇文章中&#xff0c;我们将探讨如何搭建智能问答FAQ的底层数据基础&#xff0c;并介绍需要注意的几个方面。 一、了解智能问答FAQ的概念和优势 智能问答FAQ是一种基于人工智能技术的问答系统&#…