开源背后 | 面对端侧推理引擎的挑战,阿里工程师如何应对?

阿里妹导读:MNN(Mobile Neural Network)已于今年5月7日在 Github 上正式开源。淘宝无线开发专家——陈以鎏(离青)在 GMTC 全球大前端技术大会为大家分享了 MNN 开发、开源中的思考与总结,通过淘宝在移动 AI 上的实践经验,你将会了解移动 AI 的发展状况和应用场景,以及通过端侧推理引擎了解移动/ IoT 深度优化策略。

开源与背景

人工智能从 2006 年开始,迎来了第三次浪潮。随着 AlphaGo 在 2016 年、 2017 年先后战胜李世石和柯洁,人工智能彻底进入了公众的视野。人工智能大热的背后,是大数据的积累,是深度学习的发展,也是设备算力的提升。与此同时,深度学习的框架也在不断演进 —— 从 Torch、Caffe 到 TensorFlow、PyTorch ,再到更面向移动端的 CoreML、NNAPI、NCNN、MACE 等。淘宝的深度学习推理引擎 MNN 也于 2019 年 5 月宣布开源。

MNN 是一个轻量级的深度学习端侧推理引擎,核心解决深度神经网络模型在端侧推理运行问题,涵盖深度神经网络模型的优化、转换和推理。目前,MNN已经在手淘、手猫、优酷、聚划算、UC、飞猪、千牛等 20 多个 App 中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景,每天稳定运行上亿次。此外,菜鸟自提柜等 IoT 设备中也有应用。在 2018 年双十一购物节中,MNN 在天猫晚会笑脸红包、扫一扫、明星猜拳大战等场景中使用。

MNN 项目从 2017 年开始启动,在经历一年多的开发迭代并通过了淘宝双十一的考验后,于 2018 年底启动开源计划,在历时小半年的开源改造后,今年 5 月份正式在 Github 开源。

开源首先还是因为经历过双十一之后,我们觉得自己做好了准备,开源有助于我们鞭策自己,把 MNN 做的更好;另一方面,业界的开源方案,不论是 TensorFlow Lite 、 NCNN 还是 Mace ,都给了我们很好的输入和借鉴,我们也希望借着开源,将我们的思考和创新回馈社区。

下文将主要围绕着 MNN ,来介绍淘宝在移动 AI 上的一些实践经验。

挑战与应对

端侧推理引擎面临的挑战中,碎片化是最为显著的,这种碎片化是多层次、多维度的 。

  • 训练框架上, Caffe 、 TensorFlow 、 PyTorch 、 MXNet 在训练模型时都很常用;
  • 计算设备上, CPU 、 GPU 已是主流, NPU 、 TPU 渐渐成为标配, DSP 、 FPGA 在 IoT上也很常见;
  • 算子层面上,众多参数会形成不同的组合,从而对应出不同的优化方式,轻量化和通用化需要取舍;

一款优秀的端侧推理引擎,就需要在这样碎片化的环境下,利用设备有限的资源,尽可能发挥出设备的性能。为此,也需要在转换、调度、执行上加入相应的优化策略。下文,会就其中的部分展开说明。

转换工具

模型优化

在模型优化中,MNN 引入了前端的概念来统一训练框架。不同的前端负责加载不同训练框架的模型,统一转换为 MNN 的模型格式。对于最常用的训练框架 TensorFlow 和 Caffe ,我们提供了独立的前端;其他训练框架,比如 MXNet ,则需要先将模型转换为 ONNX ,再通过 ONNX 前端加载。这里,由于 TensorFlow 的算子颗粒度相比 Caffe 和 ONNX 要更小,我们引入了图优化的模块来对齐算子之间的颗粒度。模型转换之后,会经过优化器优化,包含算子融合、算子替换、布局调整等等。之后,可以选择对浮点模型执行量化压缩。目前模型压缩的模块还没有开源,我们会在完善之后,将相关代码开源。这些步骤都完成之后,会使用 flatbuffer 来保存部署模型。

图优化

这里以 RNN-GRU cell 为例,说明一下图优化。

左图是 RNN-GRU cell 在 TensorBoard 中的可视化描述。它足足包含了 3584 个节点,而每一个节点都代表了一定的数据读写或运算,累积起来的总量非常大。然而,所有这些节点可以打包使用一个大颗粒的算子来替代。这不仅大幅降低了部署模型的大小,还可以在大颗粒算子的实现中聚合大量的计算,避免不必要的数据读写。

右图展示的是一个实际业务模型在图优化前后的性能对比。在华为 P10 、红米 3x 、小米 6 上都有 1 倍左右的性能提升。而如果是双向 GRU ,效果还会更明显。

算子融合

再以 Convolution、Batchnorm、Scale、ReLU 为例说明优化器中的算子融合。

首先融合 Convolution 和 Batchnorm,Convolution 的 weight 等于 weight 乘 alpha ,而 bias 等于 bias 乘 alpha 再加 beta ;而后融合 Convolution 和 Scale ,融合过程和 Batchnorm 类似;最后融合 Convolution 和 ReLU ,在输出结果前,计算激活函数 ReLU 即可。

这样,四个算子就可以合并成一个算子。融合的过程避免了三次 tensor 读写、两次 tensor 乘加。优化效果:MobileNet V1 在小米 5 和华为 P10 上有 20 ~ 40% 的性能提升,效果还是比较明显的。

智能调度

整体设计

在调度上, MNN 将每一类计算设备抽象为一个后端,将算子在特定后端上的实现抽象为执行器。后端负责特定设备上的资源分配和计算调度,执行器负责具体的实现。后端和算子的添加都通过注册表来实现,这是一个双层注册表结构,拓展起来就相对灵活。

调度时,可以为子图选择相应的后端,再由后端创建出相应的执行器,组成管线;也可以为子图选择后端组,实现混合调度。比如,在 GPU 上不宜实现排序算子时,可以回退到 CPU 来执行。

目前, MNN 在 CPU 上实现了 76 个算子, Metal 上有 55 个, OpenGL 覆盖了基础的 CNN 网络, OpenCL 和 Vulkan 分别有 29 和 31 个。

缓存管理


在创建完执行器之后,子图和管线已经就绪。下来,需要计算出所有 tensor 的形状,在相应的后端上完成内存的分配。而后,在准备执行器时,再为所有的执行器预先在后端上申请好必要的 buffer。运行结束后,返回 tensor 即可。

由于推理所需的所有内存在准备期就已经申请完毕,在后续推理时,如果输入的形状不变,就可以复用 tensor 和 buffer,从而避免频繁地申请、释放内存;只有输入形状改变的时候,才需要从形状计算开始,调整一次内存分配。同时,由于使用后端统一管理缓存,后端内的执行器之间,缓存就可以充分复用的,这就大大减少了内存的需求量。此外,MNN 分配内存时,默认按照32位对齐,内存对齐有利于数据读写。

执行优化

数据布局与滑窗卷积

数据布局对性能影响巨大。

先来看一看在 NCHW 的布局下,怎么利用 SIMD 加速 3x3 的 depth-wise 卷积。

首先,读取数据时,需要一次性读取四个 float 作为第一行的数据,后两行的读取也是相似的;此时,读取出的三行数据已经足够计算两列输出,即,可以复用部分数据;而后,为了提高数据复用,会再读取出第四行数据,一次计算两行两列,即,可以引入循环展开;然而,残留的 5~25 和 21~25 亮度眼边界无法利用 SIMD 计算,只能逐一循环读写完成计算;按照这样的方式,就可以相应完成后几个通道的计算。

但是, NCHW 布局下,无法充分利用 SIMD 进行加速,同时,实现优化分支越多,占用包大小也就越多。

再来看一看 NC/4HW4 布局下,利用 SIMD 加速的情况又是怎样的。

这里的 "C/4" 指的是按照 4 个通道对齐的方式重排数据。重排所有输入和权重数据后,每次 SIMD 读写都天然是 4 个通道的输入数据和 4 个通道的权重数据。这样,不论 kernel、stride、dilation 怎么变化,我们都可以简单地使用 for 循环和 SIMD 的一套通用优化完成卷积计算。既不会有边缘数据无法加速的问题,也不会对包大小造成影响。

Winograd

对于对于 KxK 卷积,可以使用 Winograd 算法进一步加速。MNN 中支持 2x2 到 7x7 的 Winograd 实现。Winograd 计算时,需要把输出拆分成 NxN 的小块,把输入拆分成 (N+K-1)x(N+K-1) 的小块。这样,问题就可以简化为两个小矩阵的卷积。

再套用 Winograd 的公式,将矩阵间的卷积运算转换为矩阵点乘运算。在这个过程中,除了矩阵点乘外,还引入三个矩阵转换,分别是输入矩阵 d 、权重矩阵 g 和结果矩阵 Y’ 的转换。其中,权重转换时, G 矩阵可以利用中国剩余数定理计算, GgGT 就可以在准备执行器时提前计算;输入转换和输出转换时用到的 A 和 B 矩阵需要根据 N 和 K 计算,我们在代码中内置了几种优化后的组合,所以实际计算时,这两个转换并不需要经过复杂的矩阵乘法。

这样,原来矩阵卷积所需要的 9x4 次乘法计算就可以用矩阵点乘的 4x4 次乘法计算代替。只考虑乘法耗时的话,加速了 2.25 倍。示例中, K=3,N=2 ,但实际使用时,可以选择更大的 N 值,获取高的加速倍数,但也要相应消耗更多的内存。

Strassen

MNN 可能是端侧推理引擎中,第一个应用 Strassen 算法优化矩阵乘法的。

Strassen 在计算矩阵乘法时,首先需要将矩阵平均拆分成四个小矩阵。这里使用 a11 ~ a22、b11 ~ b22、c11 ~ c22 代表四个小矩阵,计算过程一共需要8次小矩阵乘法运算。

这里可以引入中间小矩阵, s1 ~ s4、t1 ~ t4、m1 ~ m7、u1 ~ u7 。其中,只有 m1 ~ m7 包含小矩阵乘法,一共 7 次小矩阵乘法运算。而其他的,只包含小矩阵的加减法。也就是说,通过 4 + 4 + 7 次小矩阵加减法,替代了一次小矩阵乘法。

与原来的矩阵乘法相比, Strassen 的时间复杂度从 n 的 3 次方,降低到 n 的 2.81 次方。在矩阵较大时,矩阵乘法远远慢于矩阵加减法,收益就更明显。

在 MNN 中,我们会递归使用 Strassen 。也就是说,递归拆分矩阵。在矩阵足够大时,继续拆分;在矩阵不够大时,使用普通的矩阵算法。这里使用减免的矩阵乘法开销作为收益,使用小矩阵 s 、小矩阵 t 、小矩阵 u 矩阵的加减法开销之和作为代价,收益大于代价时,就可以考虑使用 Strassen 算法。

链路优化

链路优化可以举一个 19 年春节淘宝扫年货的例子。在获得手机相机输入后,每一帧的图像首先需要经过一次预处理,将图片缩放到年货检测模型的输入大小上,然而再经过推理,判定图像有没有年货,如果有,就发放相关权益。这个过程中,图片预处理的耗时也不容忽视。降低这个耗时,就可以帮助我们提升帧率,从而改进用户体验。为此,我们引入了一个轻量级的 2D 图片处理库,可以高效地完成色值变化、色彩空间的转换或者仿射变换等。这样, MNN 的用户就不再需要为图片处理引入 libyuv 或者 opencv 了。

性能比较

经过种种优化后,这是我们在性能上交出的答卷。

MobileNet V2 ,在 OPPO r17 和 iPhone 7Plus 上做了一系列的性能对比。

如图, MNN 的性能在 CPU 和 GPU 上都有一定的优势。

小结

总的来说, MNN 吸纳了前人的经验,也结合自己对端侧推理引擎的认知,做了许多创新。综合考虑性能、模型和后端的拓展性、缓存、 CPU 和 GPU 的算子实现,以及 CV 库等方面的表现,在端侧推理引擎中, MNN 是值得移动 AI 用户尝试的选择。

后续规划

在后续计划上,转换部分,我们计划追加更多算子和更多图优化匹配模板,也计划将模型量化工具开源;调度部分,我们计划分步实现端侧训练和边缘学习,计算设备自动选择也在筹划中;执行部分,还是会持续优化现有各端算子的实现,也计划优化量化卷积、矩阵乘算法,计划在 CV 库上直接支持 GPU ,我们也考虑将现有 NC/4HW4 实现的算法,整理为独立的高性能计算库,算法自动选择同样在筹划中;其他部分,我们会持续建设项目的可用性,持续加入更多的文档和示例。


原文链接
本文为云栖社区原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/518515.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

财报上新不久的Mobvista,还内藏何种“惊艳”?

本文为CSDN博主「L-JingJing」的原创文章 原文链接:https://blog.csdn.net/sch881226/article/details/105362679 就在不久前,Mobvista刚刚发布了2019年的财报数据。我们观察到其程序化广告收入已高达22.3亿元,同比增长40.8%;经…

Java-元注解

// 测试 元注解 public class Test02 {MyAnnotationpublic void test(){} } // 定义一个注解 // Target 表示注解可以用在哪些地方 ElementType.METHOD 是方法 ElementType.TYPE是类 Target(value {ElementType.METHOD, ElementType.TYPE})// Retention 表示注解在什么地方有…

容器十年 ——一部软件交付编年史

作者| 张磊,阿里云容器平台高级技术专家,CNCF Ambassador (CNCF 官方大使),Kubernetes 项目资深成员与维护者,曾就职于 Hyper、微软研究院(MSR),现在负责 Kubernetes 技术…

Java-自定义注解

// 自定义注解 public class Test03 {// 注解可以显示赋值, 如果没有默认值,我们就必须给注解赋值MyAnnotation2(name"wang")public void test1(){}// 当只有 一个值 为value 时, 可以不用写 value""MyAnnotation3("…

如何带领团队“攻城略地”?优秀的架构师这样做

阿里妹导读:架构师是一个既能掌控整体又能洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。看似完美的“人格模型”背后,是艰辛的探索。今天,阿里巴巴技术专家九摩将多年经验,进行系统性地总结,帮助更…

资深程序员总结:分析Linux进程的6个方法,我全都告诉你

来源 | 后端技术学堂封图| CSDN下载于视觉中国操作系统「进程」是学计算机都要接触的基本概念,抛开那些纯理论的操作系统底层实现,在Linux下做软件开发这么多年,每次程序运行出现问题,都要一步一步分析进程各种状态,去…

蚂蚁金服胡喜:金融服务将成为开源的下个前沿领域

近日,全球知名开源组织云原生计算基金会 CNCF 宣布,蚂蚁金服正式成为 CNCF 黄金会员。为什么蚂蚁金服会拥抱开源,科技公司和开源社区如何实现双赢且可持续发展?蚂蚁金服副CTO胡喜在TechCrunch上发表专栏阐述了自己的见解。 自诞生…

Java-反射概述

// 什么叫反射 public class Test02 {public static void main(String[] args) throws ClassNotFoundException {// 通过反射获取类的 Class 对象Class c1 Class.forName("reflection.User");Class c2 Class.forName("reflection.User");Class c3 Class…

PLSQL 设置日期格式为年月日不显示时分秒

在这里插入代码片nls_date_format YYYY-MM-DDnls_timestamp_format YYYY-MM-DD

云原生应用 Kubernetes 监控与弹性实践

前言 云原生应用的设计理念已经被越来越多的开发者接受与认可,而Kubernetes做为云原生的标准接口实现,已经成为了整个stack的中心,云服务的能力可以通过Cloud Provider、CRD Controller、Operator等等的方式从Kubernetes的标准接口向业务层…

零基础小白10分钟用Python搭建小说网站!网友:我可以!

都说Python什么都能做,本来我是不信的!直到我在CSDN站内看到了一件真事儿:一位博主贴出了自己10分钟用Python搭建小说网站的全过程!全程只用了2步操作,简直太秀了!!……第一步:爬取小…

Java-得到 Class 类的几种方式

public class Test03 {public static void main(String[] args) throws ClassNotFoundException {Person person new Student();System.out.println("这个人是:"person.name);// 方式一: 通过对象获取Class c1 person.getClass();System.out…

就是要你懂负载均衡--lvs和转发模式

本文希望阐述清楚LVS的各种转发模式,以及他们的工作流程和优缺点,同时从网络包的流转原理上解释清楚优缺点的来由,并结合阿里云的slb来说明优缺点。 如果对网络包是怎么流转的不太清楚,推荐先看这篇基础:程序员的网络知…

JVM-SANDBOX:从阿里精准测试走出的开源贡献奖

阿里妹导读:稳定性是历年双11的技术质量保障核心。从 2016 年开始淘宝技术质量部潜心修行,创新地研发了一套实时无侵入的字节码增强框架,于是「JVM-SANDBOX」诞生了,并且顺手在 MTSC 大会上拿了开源贡献奖,今天&#x…

EMR Spark Runtime Filter性能优化

背景 Join是一个非常耗费资源耗费时间的操作,特别是数据量很大的情况下。一般流程上会涉及底层表的扫描/shuffle/Join等过程, 如果我们能够尽可能的在靠近源头上减少参与计算的数据,一方面可以提高查询性能,另一方面也可以减少资源的消耗(网…

集齐最后一块拼图,全栈Serverless时代正式开启

近日腾讯云正式发布国内首个Serverless数据库新品——PostgreSQL for Serverless。相比普通云上数据库,该数据库能够最快1秒完成部署,成本降低70%。这款新型数据库将为数百万开发者带来更灵活的业务开发模式、更快捷的上云体验,以及更大空间的…

Java-所有类型的Class对象

public class Test04 {public static void main(String[] args) {Class c1 Object.class; // 类Class c2 Comparable.class; // 接口Class c3 String[].class; // 一位数组Class c4 int[][].class; // 二维数组Class c5 Override.class; // 注解Class c6 ElementType.cla…

分布式服务架构下的混沌工程实践

本文来自阿里巴巴高可用架构团队高级开发工程师肖长军(花名穹谷)在 GIAC(全球互联网架构大会)上的分享,包含三部分内容:(阿里巴巴中间件公众号对话框发送“混沌工程”,获取分享PPT&a…

Java-类加载内存分析

没有听懂 public class Test05 {public static void main(String[] args) {A a new A();System.out.println(A.m);/*1. 加载到内存&#xff0c;会产生一个类对应Class对象2. 链接&#xff0c; 链接结束后 m 03. 初始化<clinit>(){System.out.println("A类静态代码…

小谈CDN回源函数计算的应用场景

CDN团队联合函数计算团队近期推出了一个全新功能&#xff0c;即通过CDN把回源流量指向函数计算进行处理&#xff0c;该功能旨在帮助CDN用户能通过函数计算快速处理和便捷处理回源数据为目的&#xff0c;用户仅仅需要在CDN回源地址填写函数计算的自定义域名即可把请求转发到函数…