第60步 深度学习图像识别:误判病例分析(Pytorch)

基于WIN10的64位系统演示

一、写在前面

上期内容基于Tensorflow环境做了误判病例分析(传送门),考虑到不少模型在Tensorflow环境没有迁移学习的预训练模型,因此有必要在Pytorch环境也搞搞误判病例分析。

本期以SqueezeNet模型为例,因为它建模速度快。

同样,基于GPT-4辅助编程,后续会分享改写过程。

二、误判病例分析实战

继续使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
# 导入必要的包
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as npwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")################################导入数据集#####################################
import torch
from torchvision import datasets, transforms
from torch.nn.functional import softmax
import os
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):def __getitem__(self, index):original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)path = self.imgs[index][0]tuple_with_path = (original_tuple + (path,))return tuple_with_path# 数据集路径
data_dir = "./MTB"# 图像的大小
img_height = 256
img_width = 256# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.8 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=0)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes# 获取数据集的类别
class_names = full_dataset.classes# 保存预测结果的列表
results = []###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True)  # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels# 根据分类任务修改最后一层
model.classifier[1] = nn.Conv2d(num_ftrs, len(class_names), kernel_size=(1,1))# 修改模型最后的输出层为我们需要的类别数
model.num_classes = len(class_names)model = model.to(device)# 打印模型摘要
print(model)#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = torch.optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 5# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # 设置模型为训练模式else:model.eval()   # 设置模型为评估模式running_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels, paths in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print()# 保存模型
torch.save(model.state_dict(), 'SqueezeNet_model-1.pth')# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
# 导入 os 库
import os# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:for inputs, labels, paths in dataloaders[phase]:  # 在这里添加 pathsinputs = inputs.to(device)labels = labels.to(device)# 使用模型对这一批图片进行预测outputs = model(inputs)probabilities = softmax(outputs, dim=1)_, predictions = torch.max(outputs, 1)# 遍历这一批图片for i, path in enumerate(paths):  # 在这里添加 path 和 enumerate 函数# 获取图片的名称、标签、预测值和概率image_name = os.path.basename(path)  # 使用 os.path.basename 函数获取图片名称original_label = class_names[labels[i]]prediction = predictions[i]probability = probabilities[i]# 根据预测结果和真实标签,判定图片所属的组别group = Noneif original_label == "Tuberculosis" and probability[1] >= 0.5:group = "A"elif original_label == "Normal" and probability[1] < 0.5:group = "B"elif original_label == "Normal" and probability[1] >= 0.5:group = "C"elif original_label == "Tuberculosis" and probability[1] < 0.5:group = "D"# 将结果添加到结果列表中results.append({"原始图片的名称": image_name,"属于训练集还是验证集": phase,"预测为Tuberculosis的概率值": probability[1].item(),"判定的组别": group})# 将结果保存为Pandas DataFrame,然后保存到csv文件
result_df = pd.DataFrame(results)
result_df.to_csv("result-2.csv", index=False)

跟Tensorflow改写的类似,主要有两处变化:

(1)导入数据集部分:而在误判病例分析中,我们需要知道每一张图片的名称、被预测的结果等详细信息因此需要加载图片路径和图片名称的信息。

(2)误判病例分析部分:也就是需要知道哪些预测正确,哪些预测错误。

(b)调教GPT-4的过程

(b1)咒语:请根据{代码1},改写和续写《代码2》。代码1:{也就是之前用tensorflow写的误判病例分析部分};代码2:《也就是修改之前的SqueezeNet模型建模代码》

还是列出来吧:

代码1:

# 训练模型后,现在使用模型对所有图片进行预测,并保存预测结果到csv文件中
import pandas as pd# 保存预测结果的dataframe
result_df = pd.DataFrame(columns=["原始图片的名称", "属于训练集还是验证集", "预测为Tuberculosis的概率值", "判定的组别"])# 对训练集和验证集中的每一批图片进行预测
for dataset, dataset_name in zip([train_ds_with_filenames, val_ds_with_filenames], ["训练集", "验证集"]):for images, labels, paths in dataset:# 使用模型对这一批图片进行预测probabilities = model.predict(images)predictions = tf.math.argmax(probabilities, axis=-1)# 遍历这一批图片for path, label, prediction, probability in zip(paths, labels, predictions, probabilities):# 获取图片名称和真实标签image_name = path.numpy().decode("utf-8").split('/')[-1]original_label = class_names[label]# 根据预测结果和真实标签,判定图片所属的组别group = Noneif original_label == "Tuberculosis" and probability[1] >= 0.5:group = "A"elif original_label == "Normal" and probability[1] < 0.5:group = "B"elif original_label == "Normal" and probability[1] >= 0.5:group = "C"elif original_label == "Tuberculosis" and probability[1] < 0.5:group = "D"# 将结果添加到dataframe中result_df = result_df.append({"原始图片的名称": image_name,"属于训练集还是验证集": dataset_name,"预测为Tuberculosis的概率值": probability[1],"判定的组别": group}, ignore_index=True)# 保存结果到csv文件
result_df.to_csv("result.csv", index=False)

代码2:

######################################导入包###################################
# 导入必要的包
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as npwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")################################导入数据集#####################################
import torch
from torchvision import datasets, transforms
import os# 数据集路径
data_dir = "./MTB"# 图像的大小
img_height = 256
img_width = 256# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = datasets.ImageFolder(data_dir)# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占80%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 将数据增强应用到训练集
train_dataset.dataset.transform = data_transforms['train']# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes###############################定义TNT模型################################
# 导入必要的库
import torch.nn as nn
import timm# 定义Bottleneck Transformer模型
model = timm.create_model('botnet26t_256', pretrained=True)  # 你可以选择适合你需求的BotNet版本
num_ftrs = model.feature_info[-1]['num_chs']# 根据分类任务修改最后一层
model.head.fc = nn.Linear(num_ftrs, len(class_names))# 将模型移至指定设备
model = model.to(device)# 打印模型摘要
print(model)#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 20# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # 设置模型为训练模式else:model.eval()   # 设置模型为评估模式running_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print()# 保存模型
torch.save(model.state_dict(), 'tnt_dit_model.pth')

GPT-4回复:

代码2的改写版本如下:

首先,我们需要为PyTorch添加类别名称,以便我们在生成结果时可以进行映射,然后创建一个列表来存储预测结果。

################################导入数据集#####################################
...
# 获取数据集的类别
class_names = full_dataset.classes
# 保存预测结果的列表
results = []

接着,我们在进行预测时,为了获取每个样本的概率,我们需要使用torch.nn.functional.softmax()函数,同时还需要将预测值与0.5比较,以判定组别。最后,我们使用Pandas将预测结果保存为CSV文件。

import pandas as pd
from torch.nn.functional import softmax# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 使用模型对这一批图片进行预测outputs = model(inputs)probabilities = softmax(outputs, dim=1)_, predictions = torch.max(outputs, 1)# 遍历这一批图片for i in range(inputs.size(0)):# 获取图片的名称、标签、预测值和概率image_name = dataloaders[phase].dataset.dataset.samples[i][0].split('/')[-1]original_label = class_names[labels[i]]prediction = predictions[i]probability = probabilities[i]# 根据预测结果和真实标签,判定图片所属的组别group = Noneif original_label == "Tuberculosis" and probability[1] >= 0.5:group = "A"elif original_label == "Normal" and probability[1] < 0.5:group = "B"elif original_label == "Normal" and probability[1] >= 0.5:group = "C"elif original_label == "Tuberculosis" and probability[1] < 0.5:group = "D"# 将结果添加到结果列表中results.append({"原始图片的名称": image_name,"属于训练集还是验证集": phase,"预测为Tuberculosis的概率值": probability[1].item(),"判定的组别": group})# 将结果保存为Pandas DataFrame,然后保存到csv文件
result_df = pd.DataFrame(results)
result_df.to_csv("result.csv", index=False)

我们看看“result.csv”文件是否符合我们的要求:

 

问题很明显,分组全是“Normal”!!!

(b2)咒语:为什么输出的“原始图片的名车”全部是“MTB\Normal\”,完全没有“Tuberculosis”?

GPT-4回复:

在PyTorch中,当我们使用torchvision的datasets.ImageFolder载入数据时,数据被按照文件夹的顺序进行排序,所以获取图片名称时,我们只是在循环中按顺序获取了数据集中的图片路径。这可能会在对验证集进行预测时出现问题,因为我们使用了random_split函数对数据进行了随机划分,而获取图片路径的方式并未考虑到这个随机性。

为了解决这个问题,你可以试试将图片路径也保存在数据加载器中。在这里,我假设你的训练集和验证集是以文件夹的形式存储的,每个文件夹的名字就是类别的名称。以下是一个简单的自定义数据集类,它可以在加载数据的同时获取每个图片的路径:

from torch.utils.data import Dataset
from PIL import Imageclass ImageFolderWithPaths(Dataset):def __init__(self, image_folder, transform=None):self.image_folder = image_folderself.transform = transformself.image_paths = list(map(lambda x: x[0], image_folder.imgs))def __getitem__(self, index):original_tuple = self.image_folder.imgs[index]path = original_tuple[0]image = Image.open(path).convert("RGB")if self.transform is not None:image = self.transform(image)return (image, original_tuple[1], path)def __len__(self):return len(self.image_folder.imgs)

你可以这样使用这个数据集类:

# 创建原始的ImageFolder数据集
original_dataset = datasets.ImageFolder(data_dir, transform=data_transforms['train'])# 使用我们的自定义数据集类,获取图片路径
full_dataset = ImageFolderWithPaths(original_dataset, transform=data_transforms['train'])# 现在,你的数据加载器在每次迭代时都会返回图片、标签和图片路径
for images, labels, paths in dataloader:...

看得懂怎么改写代码不?看不懂也不要紧,继续:

(b3)咒语:帮我在这个代码上改写和更新,并展示所有代码:{复制代码}

GPT-4回复:

import torch
from torchvision import datasets, transforms
from torch.nn.functional import softmax
import os
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):def __getitem__(self, index):original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)path = self.imgs[index][0]tuple_with_path = (original_tuple + (path,))return tuple_with_path# 数据集路径
data_dir = "./MTB"# 图像的大小
img_height = 256
img_width = 256# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes# 获取数据集的类别
class_names = full_dataset.classes# 保存预测结果的列表
results = []###############################定义TNT模型################################
# 定义Bottleneck Transformer模型
model = timm.create_model('botnet26t_256', pretrained=True)  # 你可以选择适合你需求的BotNet版本
num_ftrs = model.feature_info[-1]['num_chs']# 根据分类任务修改最后一层
model.head.fc = nn.Linear(num_ftrs, len(class_names))# 将模型移至指定设备
model = model.to(device)# 打印模型摘要
print(model)#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = torch.optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 4# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # 设置模型为训练模式else:model.eval()   # 设置模型为评估模式running_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print()# 保存模型
torch.save(model.state_dict(), 'bonet_dit_model-1.pth')# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:for inputs, labels, paths in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 使用模型对这一批图片进行预测outputs = model(inputs)probabilities = softmax(outputs, dim=1)_, predictions = torch.max(outputs, 1)# 遍历这一批图片for i in range(inputs.size(0)):# 获取图片的名称、标签、预测值和概率image_name = os.path.basename(paths[i])original_label = class_names[labels[i]]prediction = predictions[i]probability = probabilities[i]# 根据预测结果和真实标签,判定图片所属的组别if original_label == class_names[prediction]:group = 'correct'  # 正确预测的图片else:group = 'misclassified'  # 错误预测的图片# 将结果保存为字典result = {'image': image_name,'label': original_label,'prediction': class_names[prediction],'probability': probability,'group': group}# 将字典添加到结果列表中results.append(result)# 将结果列表保存为数据框,并输出为csv文件
results_df = pd.DataFrame(results)
results_df.to_csv('classification_results.csv', index=False)

运行,报错,哈哈哈:

(b4)咒语:报错:Traceback (most recent call last): File "<string>", line 1, in <module>File "C:\ProgramData\Anaconda3\envs\Pytorch\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel)

  File "C:\ProgramData\Anaconda3\envs\Pytorch\lib\multiprocessing\spawn.py", line 126, in _main self = reduction.pickle.load(from_parent)

AttributeError: Can't get attribute 'ImageFolderWithPaths' on <module '__main__' (built-in)>

GPT-4回复:

 

 继续报错,继续问:Traceback (most recent call last):

  File "C:\Users\Administrator\AppData\Local\Temp\ipykernel_19344\1832509689.py", line 146, in <cell line: 131>

    for inputs, labels in dataloaders[phase]:

ValueError: too many values to unpack (expected 2)

GPT-4回答:

 

最后能运行了,又回到(b2)的问题:为什么输出的“原始图片的名称”全部是“MTB\Normal\”,完全没有“Tuberculosis”???一脸蒙蔽,无奈我又问了TA一次。

(b4)咒语:为什么输出的“原始图片的名车”还全部是“MTB\Normal\”,完全没有“Tuberculosis”????请显示完整的代码以解决这个问题。

GPT-4这回给出正确答案:

# 导入 os 库
import os# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:for inputs, labels, paths in dataloaders[phase]:  # 在这里添加 pathsinputs = inputs.to(device)labels = labels.to(device)# 使用模型对这一批图片进行预测outputs = model(inputs)probabilities = softmax(outputs, dim=1)_, predictions = torch.max(outputs, 1)# 遍历这一批图片for i, path in enumerate(paths):  # 在这里添加 path 和 enumerate 函数# 获取图片的名称、标签、预测值和概率image_name = os.path.basename(path)  # 使用 os.path.basename 函数获取图片名称original_label = class_names[labels[i]]prediction = predictions[i]probability = probabilities[i]# 根据预测结果和真实标签,判定图片所属的组别group = Noneif original_label == "Tuberculosis" and probability[1] >= 0.5:group = "A"elif original_label == "Normal" and probability[1] < 0.5:group = "B"elif original_label == "Normal" and probability[1] >= 0.5:group = "C"elif original_label == "Tuberculosis" and probability[1] < 0.5:group = "D"# 将结果添加到结果列表中results.append({"原始图片的名称": image_name,"属于训练集还是验证集": phase,"预测为Tuberculosis的概率值": probability[1].item(),"判定的组别": group})# 将结果保存为Pandas DataFrame,然后保存到csv文件
result_df = pd.DataFrame(results)
result_df.to_csv("result-2.csv", index=False)

总结:现在来看,改写过程中出问题大概率是图片的路径提取中出了问题。核心咒语还是一样的:{以0.5为阈值,因此可以样本分为三份:(a)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测正确,判定为A组;(b)本来就是Normal的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为B组;(c)本来就是Normal的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测错误,判定为C组;(d)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为D组;},剩余的就跟GPT-4对线,出了问题及时且准确的进行反馈,这很重要!!!

三、输出结果

 有了这个表,又可以水不少图了。

四、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/51611.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

窗口看门狗

从下往上看: 1. 时钟设置 RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG,ENABLE);//使能独立看门狗时钟 WWDG_SetPrescaler(WWDG_Prescaler_8);//看门狗预分频器WWDG counter clock (PCLK1/4096)/8 2.设置窗口值 实际就是设置WWDG_CR的低七位值, 但是这个值要大于0x40(也就是…

【分享】小型园区组网场景

小型园区组网图 在小型园区中&#xff0c;S2700&S3700通常部署在网络的接入层&#xff0c;S5700&S6700通常部署在网络的核心&#xff0c;出口路由器一般选用AR系列路由器。 接入交换机与核心交换机通过Eth-Trunk组网保证可靠性。 每个部门业务划分到一个VLAN中&#…

Vulnhub: DriftingBlues: 2靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.207 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.207 80端口的/blog目录为wordpress wpscan收集wordpress用户和爆破密码 wpscan --url http://driftingblues.box/blog -e…

非凸联合创始人李佐凡受邀出席复旦DSBA项目座谈会

8月17日&#xff0c;非凸科技联合创始人&CTO李佐凡受邀参加复旦管院数据科学与商业分析专业硕士&#xff08;DS&BA&#xff09;项目发展座谈会&#xff0c;与学校教授、老师在生源背景、课程教学、职业发展、学生培养和企业合作方面进行深入交流&#xff0c;旨在更好地…

【C++练习】普通方法+利用this 设置一个矩形类(Rectangle), 包含私有成员长(length)、 宽(width), 定义一下成员函数

题目 设置一个矩形类(Rectangle), 包含私有成员长(length)、 宽(width), 定义成员函数: void set_ len(int l); //设置长度 设置宽度void set_ wid(int w); 获取长度: int get len(); 获取宽度: int get _wid); 显示周长和面积: v…

民族传统文化分享系统uniapp 微信小程序

管理员、用户可通过Android系统手机打开系统&#xff0c;注册登录后可进行管理员后端&#xff1b;首页、个人中心、用户管理、知识分类管理、知识资源管理、用户分享管理、意见反馈、系统管理&#xff0c;用户前端&#xff1b;首页、知识资源、用户分享、我的等。 本系统的使用…

GO-vscode远程开发和调试

本文内容主要包括&#xff1a; 概述&#xff1a; 主要就是把代码放到服务器上然后远程去开发和调试 工具&#xff1a; vscode 远程端&#xff1a; linux 一.安装远程插件 vscode安装Remote - SSH&#xff0c;Remote Explorer&#xff0c;Remote Development&#xff0c…

卷积过程详细讲解

1&#xff1a;单通道卷积 以单通道卷积为例&#xff0c;输入为&#xff08;1,5,5&#xff09;&#xff0c;分别表示1个通道&#xff0c;宽为5&#xff0c;高为5。假设卷积核大小为3x3&#xff0c;padding0&#xff0c;stride1。 卷积过程如下&#xff1a; 相应的卷积核不断…

企微配置回调服务

1、企微配置可信域名 2、企微获取成员userID 3、企微获取用户敏感数据 4、企微配置回调服务 文章目录 一、简介1、概述2、相关文档地址 二、企微配置消息服务器1、配置消息接收参数2、参数解析3、参数拼接规则 三、代码编写—使用已有库1、代码下载2、代码修改3、服务代码编写 …

基于swing的超市信息管理系统java jsp仓库进销存mysql源代码

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 基于swing的超市信息管理系统 系统有1权限&#xff1…

Linux驱动开发(Day5)

思维导图&#xff1a; 不同设备号文件绑定&#xff1a;

回归预测 | MATLAB实现SA-ELM模拟退火算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SA-ELM模拟退火算法优化极限学习机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现SA-ELM模拟退火算法优化极限学习机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本…

ElasticSearch-集成ik分词器

本文已收录于专栏 《中间件合集》 目录 背景介绍版本选择优势说明集成过程1.下载安装包2.解压安装包3.重启ElasticSearch服务3.1通过ps -ef | grep elastic查看正在启动的es进程号3.2使用kill -9 xxx 杀死进程3.3使用 ./elasticsearch 启动es服务 分词测试细粒度分词方式分词请…

CTFshow 限时活动 红包挑战9 详细题解

CTFshow红包挑战9 题目源码开源了。源码如下&#xff1a; common.php <?phpclass user{public $id;public $username;private $password;public function __toString(){return $this->username;}}class cookie_helper{private $secret "*************"; /…

【Java架构-包管理工具】-Maven私服搭建-Nexus(三)

本文摘要 Maven作为Java后端使用频率非常高的一款依赖管理工具&#xff0c;在此咱们由浅入深&#xff0c;分三篇文章&#xff08;Maven基础、Maven进阶、私服搭建&#xff09;来深入学习Maven&#xff0c;此篇为开篇主要介绍Maven私服搭建-Nexus 文章目录 本文摘要1. Nexus安装…

本地搭建CFimagehost私人图床【公网远程访问】

文章目录 1.前言2. CFImagehost网站搭建2.1 CFImagehost下载和安装2.2 CFImagehost网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 4.公网访问测…

Redis数据结构之Set

Set 类型是一个无序并唯一的键值集合&#xff0c;它的存储顺序不会按照插入的先后顺序进行存储。Redis 中集合是通过哈希表实现的&#xff0c;所以添加&#xff0c;删除&#xff0c;查找的复杂度都是 O(1)。相对于列表&#xff0c;集合也有两个特点&#xff1a;无序、不可重复 …

js reverse实现数据的倒序

2023.8.25今天我学习了如何在数组顺序进行倒序排列&#xff0c;如&#xff1a; 原数组为&#xff1a; 我们只需要对数组使用reverse()方法 let demo [{id: 1, name: 一号},{id: 2, name: 二号},{id: 3, name: 三号},]demo.reverse()console.log(demo) 扩展&#xff1a; 当我…

jmeter入门:接口压力测试全解析

一.对接口压力测试 1.配置 1.添加线程组&#xff08;参数上文有解释 这里不介绍&#xff09; 2.添加取样器 不用解释一看就知道填什么。。。 3.添加头信息&#xff08;否则请求头对不上&#xff09; 也不用解释。。。 4.配置监听器 可以尝试使用这几个监听器。 2.聚合结果…

Tushare入门小册

Tushare入门小册 一、Tushare平台介绍 Pro版数据更稳定质量更好了&#xff0c;我们提供的不再是直接从互联网抓取&#xff0c;而是通过社区的采集和整理存入数据库经过质量控制后再提供给用户。但Pro依然是个开放的&#xff0c;免费的平台&#xff0c;不带任何商业性质和目的…