【动手学深度学习】--21.锚框

锚框

学习视频:锚框【动手学深度学习v2】

官方笔记:锚框

1.锚框

image-20230722093143509

目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边界从而更准确地预测目标的真实边界框(ground-truth bounding box)。 不同的模型使用的区域采样方法可能不同。 这里我们介绍其中的一种方法:以每个像素为中心,生成多个缩放比和宽高比(aspect ratio)不同的边界框。 这些边界框被称为锚框(anchor box)

首先,让我们修改输出精度,以获得更简洁的输出

%matplotlib inline
import torch
from d2l import torch as d2ltorch.set_printoptions(2)  # 精简输出精度

1.1生成多个锚框

image-20230722095819137

#@save
def multibox_prior(data, sizes, ratios):"""生成以每个像素为中心具有不同形状的锚框"""in_height, in_width = data.shape[-2:]device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)boxes_per_pixel = (num_sizes + num_ratios - 1)size_tensor = torch.tensor(sizes, device=device)ratio_tensor = torch.tensor(ratios, device=device)# 为了将锚点移动到像素的中心,需要设置偏移量。# 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5offset_h, offset_w = 0.5, 0.5steps_h = 1.0 / in_height  # 在y轴上缩放步长steps_w = 1.0 / in_width  # 在x轴上缩放步长# 生成锚框的所有中心点center_h = (torch.arange(in_height, device=device) + offset_h) * steps_hcenter_w = (torch.arange(in_width, device=device) + offset_w) * steps_wshift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)# 生成“boxes_per_pixel”个高和宽,# 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),sizes[0] * torch.sqrt(ratio_tensor[1:])))\* in_height / in_width  # 处理矩形输入h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),sizes[0] / torch.sqrt(ratio_tensor[1:])))# 除以2来获得半高和半宽anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(in_height * in_width, 1) / 2# 每个中心点都将有“boxes_per_pixel”个锚框,# 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],dim=1).repeat_interleave(boxes_per_pixel, dim=0)output = out_grid + anchor_manipulationsreturn output.unsqueeze(0)

可以看到返回的锚框变量Y的形状是(批量大小,锚框的数量,4)。

img = d2l.plt.imread('../img/catdog.jpg')
h, w = img.shape[:2]print(h, w)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape'''
561 728torch.Size([1, 2042040, 4])
'''

将锚框变量Y的形状更改为(图像高度,图像宽度,以同一像素为中心的锚框的数量,4)后,我们可以获得以指定像素的位置为中心的所有锚框。 在接下来的内容中,我们访问以(250,250)为中心的第一个锚框。 它有四个元素:锚框左上角的(x,y)轴坐标和右下角的(x,y)轴坐标。 输出中两个轴的坐标各分别除以了图像的宽度和高度

boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]'''
tensor([0.06, 0.07, 0.63, 0.82])
'''

为了显示以图像中以某个像素为中心的所有锚框,定义下面的show_bboxes函数来在图像上绘制多个边界框。

#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):"""显示所有边界框"""def _make_list(obj, default_values=None):if obj is None:obj = default_valueselif not isinstance(obj, (list, tuple)):obj = [obj]return objlabels = _make_list(labels)colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])for i, bbox in enumerate(bboxes):color = colors[i % len(colors)]rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)axes.add_patch(rect)if labels and len(labels) > i:text_color = 'k' if color == 'w' else 'w'axes.text(rect.xy[0], rect.xy[1], labels[i],va='center', ha='center', fontsize=9, color=text_color,bbox=dict(facecolor=color, lw=0))

正如从上面代码中所看到的,变量boxes中x轴和y轴的坐标值已分别除以图像的宽度和高度。 绘制锚框时,我们需要恢复它们原始的坐标值。 因此,在下面定义了变量bbox_scale。 现在可以绘制出图像中所有以(250,250)为中心的锚框了。 如下所示,缩放比为0.75且宽高比为1的蓝色锚框很好地围绕着图像中的狗。

d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2','s=0.75, r=0.5'])

image-20230722100046025

2.交并比

image-20230824164907691

接下来部分将使用交并比来衡量锚框和真实边界框之间、以及不同锚框之间的相似度。 给定两个锚框或边界框的列表,以下box_iou函数将在这两个列表中计算它们成对的交并比。

#@save
def box_iou(boxes1, boxes2):"""计算两个锚框或边界框列表中成对的交并比"""box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *(boxes[:, 3] - boxes[:, 1]))# boxes1,boxes2,areas1,areas2的形状:# boxes1:(boxes1的数量,4),# boxes2:(boxes2的数量,4),# areas1:(boxes1的数量,),# areas2:(boxes2的数量,)areas1 = box_area(boxes1)areas2 = box_area(boxes2)# inter_upperlefts,inter_lowerrights,inters的形状:# (boxes1的数量,boxes2的数量,2)inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)# inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)inter_areas = inters[:, :, 0] * inters[:, :, 1]union_areas = areas1[:, None] + areas2 - inter_areasreturn inter_areas / union_areas

3.在训练数据中标注锚框

在训练集中,我们将每个锚框视为一个训练样本。 为了训练目标检测模型,我们需要每个锚框的类别(class)和偏移量(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。 在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。

目标检测训练集带有真实边界框的位置及其包围物体类别的标签。 要标记任何生成的锚框,我们可以参考分配到的最接近此锚框的真实边界框的位置和类别标签

3.1 将真实边界框分配给锚框

image-20230824165147900

image-20230824165211860

具体算法为:

#@save
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):"""将最接近的真实边界框分配给锚框"""num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]# 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoUjaccard = box_iou(anchors, ground_truth)# 对于每个锚框,分配的真实边界框的张量anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,device=device)# 根据阈值,决定是否分配真实边界框max_ious, indices = torch.max(jaccard, dim=1)anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)box_j = indices[max_ious >= iou_threshold]anchors_bbox_map[anc_i] = box_jcol_discard = torch.full((num_anchors,), -1)row_discard = torch.full((num_gt_boxes,), -1)for _ in range(num_gt_boxes):max_idx = torch.argmax(jaccard)box_idx = (max_idx % num_gt_boxes).long()anc_idx = (max_idx / num_gt_boxes).long()anchors_bbox_map[anc_idx] = box_idxjaccard[:, box_idx] = col_discardjaccard[anc_idx, :] = row_discardreturn anchors_bbox_map

3.2标记类别和偏移量

image-20230824165429907

#@save
def offset_boxes(anchors, assigned_bb, eps=1e-6):"""对锚框偏移量的转换"""c_anc = d2l.box_corner_to_center(anchors)c_assigned_bb = d2l.box_corner_to_center(assigned_bb)offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])offset = torch.cat([offset_xy, offset_wh], axis=1)return offset

image-20230824165448159

#@save
def multibox_target(anchors, labels):"""使用真实边界框标记锚框"""batch_size, anchors = labels.shape[0], anchors.squeeze(0)batch_offset, batch_mask, batch_class_labels = [], [], []device, num_anchors = anchors.device, anchors.shape[0]for i in range(batch_size):label = labels[i, :, :]anchors_bbox_map = assign_anchor_to_bbox(label[:, 1:], anchors, device)bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(1, 4)# 将类标签和分配的边界框坐标初始化为零class_labels = torch.zeros(num_anchors, dtype=torch.long,device=device)assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,device=device)# 使用真实边界框来标记锚框的类别。# 如果一个锚框没有被分配,标记其为背景(值为零)indices_true = torch.nonzero(anchors_bbox_map >= 0)bb_idx = anchors_bbox_map[indices_true]class_labels[indices_true] = label[bb_idx, 0].long() + 1assigned_bb[indices_true] = label[bb_idx, 1:]# 偏移量转换offset = offset_boxes(anchors, assigned_bb) * bbox_maskbatch_offset.append(offset.reshape(-1))batch_mask.append(bbox_mask.reshape(-1))batch_class_labels.append(class_labels)bbox_offset = torch.stack(batch_offset)bbox_mask = torch.stack(batch_mask)class_labels = torch.stack(batch_class_labels)return (bbox_offset, bbox_mask, class_labels)

3.3举例

下面通过一个具体的例子来说明锚框标签。 我们已经为加载图像中的狗和猫定义了真实边界框,其中第一个元素是类别(0代表狗,1代表猫),其余四个元素是左上角和右下角的(x,y)轴坐标(范围介于0和1之间)。我们还构建了五个锚框,用左上角和右下角的坐标进行标记:A0,…A4(索引从0开始),然后我们在图像中绘制这些真实边界框和锚框

ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],[1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],[0.57, 0.3, 0.92, 0.9]])fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

image-20230824165704534

使用上面定义的multibox_target函数,我们可以根据狗和猫的真实边界框,标注这些锚框的分类和偏移量。 在这个例子中,背景、狗和猫的类索引分别为0、1和2。 下面我们为锚框和真实边界框样本添加一个维度

labels = multibox_target(anchors.unsqueeze(dim=0),ground_truth.unsqueeze(dim=0))

返回的结果中有三个元素,都是张量格式。第三个元素包含标记的输入锚框的类别。

image-20230824165743237

labels[2]'''
tensor([[0, 1, 2, 0, 2]])
'''

返回的第二个元素是掩码(mask)变量,形状为(批量大小,锚框数的四倍)。 掩码变量中的元素与每个锚框的4个偏移量一一对应。 由于我们不关心对背景的检测,负类的偏移量不应影响目标函数。 通过元素乘法,掩码变量中的零将在计算目标函数之前过滤掉负类偏移量。

labels[1]'''
tensor([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1.,1., 1.]])
'''

返回的第一个元素包含了为每个锚框标记的四个偏移值。 请注意,负类锚框的偏移量被标记为零

labels[0]
'''
tensor([[-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00,  1.40e+00,  1.00e+01,2.59e+00,  7.18e+00, -1.20e+00,  2.69e-01,  1.68e+00, -1.57e+00,-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, -5.71e-01, -1.00e+00,4.17e-06,  6.26e-01]])
'''

4.使用非极大值抑制预测边界框

在预测时,我们先为图像生成多个锚框,再为这些锚框一一预测类别和偏移量。 一个预测好的边界框则根据其中某个带有预测偏移量的锚框而生成。 下面我们实现了offset_inverse函数,该函数将锚框和偏移量预测作为输入,并应用逆偏移变换来返回预测的边界框坐标。

#@save
def offset_inverse(anchors, offset_preds):"""根据带有预测偏移量的锚框来预测边界框"""anc = d2l.box_corner_to_center(anchors)pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)predicted_bbox = d2l.box_center_to_corner(pred_bbox)return predicted_bbox

image-20230824165922703

以下nms函数按降序对置信度进行排序并返回其索引。

#@save
def nms(boxes, scores, iou_threshold):"""对预测边界框的置信度进行排序"""B = torch.argsort(scores, dim=-1, descending=True)keep = []  # 保留预测边界框的指标while B.numel() > 0:i = B[0]keep.append(i)if B.numel() == 1: breakiou = box_iou(boxes[i, :].reshape(-1, 4),boxes[B[1:], :].reshape(-1, 4)).reshape(-1)inds = torch.nonzero(iou <= iou_threshold).reshape(-1)B = B[inds + 1]return torch.tensor(keep, device=boxes.device)

我们定义以下multibox_detection函数来将非极大值抑制应用于预测边界框。 这里的实现有点复杂,请不要担心。我们将在实现之后,马上用一个具体的例子来展示它是如何工作的。

#@save
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,pos_threshold=0.009999999):"""使用非极大值抑制来预测边界框"""device, batch_size = cls_probs.device, cls_probs.shape[0]anchors = anchors.squeeze(0)num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]out = []for i in range(batch_size):cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)conf, class_id = torch.max(cls_prob[1:], 0)predicted_bb = offset_inverse(anchors, offset_pred)keep = nms(predicted_bb, conf, nms_threshold)# 找到所有的non_keep索引,并将类设置为背景all_idx = torch.arange(num_anchors, dtype=torch.long, device=device)combined = torch.cat((keep, all_idx))uniques, counts = combined.unique(return_counts=True)non_keep = uniques[counts == 1]all_id_sorted = torch.cat((keep, non_keep))class_id[non_keep] = -1class_id = class_id[all_id_sorted]conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]# pos_threshold是一个用于非背景预测的阈值below_min_idx = (conf < pos_threshold)class_id[below_min_idx] = -1conf[below_min_idx] = 1 - conf[below_min_idx]pred_info = torch.cat((class_id.unsqueeze(1),conf.unsqueeze(1),predicted_bb), dim=1)out.append(pred_info)return torch.stack(out)

现在让我们将上述算法应用到一个带有四个锚框的具体示例中。 为简单起见,我们假设预测的偏移量都是零,这意味着预测的边界框即是锚框。 对于背景、狗和猫其中的每个类,我们还定义了它的预测概率。

anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],[0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0] * anchors.numel())
cls_probs = torch.tensor([[0] * 4,  # 背景的预测概率[0.9, 0.8, 0.7, 0.1],  # 狗的预测概率[0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率

我们可以在图像上绘制这些预测边界框和置信度。

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

image-20230824170019165

现在我们可以调用multibox_detection函数来执行非极大值抑制,其中阈值设置为0.5。 请注意,我们在示例的张量输入中添加了维度。

我们可以看到返回结果的形状是(批量大小,锚框的数量,6)。 最内层维度中的六个元素提供了同一预测边界框的输出信息。 第一个元素是预测的类索引,从0开始(0代表狗,1代表猫),值-1表示背景或在非极大值抑制中被移除了。 第二个元素是预测的边界框的置信度。 其余四个元素分别是预测边界框左上角和右下角的(x,y)轴坐标(范围介于0和1之间)

output = multibox_detection(cls_probs.unsqueeze(dim=0),offset_preds.unsqueeze(dim=0),anchors.unsqueeze(dim=0),nms_threshold=0.5)
output'''
tensor([[[ 0.00,  0.90,  0.10,  0.08,  0.52,  0.92],[ 1.00,  0.90,  0.55,  0.20,  0.90,  0.88],[-1.00,  0.80,  0.08,  0.20,  0.56,  0.95],[-1.00,  0.70,  0.15,  0.30,  0.62,  0.91]]])
'''

删除-1类别(背景)的预测边界框后,我们可以输出由非极大值抑制保存的最终预测边界框。

fig = d2l.plt.imshow(img)
for i in output[0].detach().numpy():if i[0] == -1:continuelabel = ('dog=', 'cat=')[int(i[0])] + str(i[1])show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

image-20230824170122408

实践中,在执行非极大值抑制前,我们甚至可以将置信度较低的预测边界框移除,从而减少此算法中的计算量。 我们也可以对非极大值抑制的输出结果进行后处理。例如,只保留置信度更高的结果作为最终输出。

总结:

  • 一类目标检测算法基于锚框来预测
  • 首先生成大量锚框,并赋予标号,每个锚框作为一个样本进行训练
  • 在预测时,使用NMS来去掉冗余的预测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/51563.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧党建VR虚拟3D数字化展厅发展和传承传统文化

三维全景虚拟现实技术应用在虚拟展馆中&#xff0c;主要是通过全景照片的虚拟与建模&#xff0c;营造出三维虚拟仿真的场景&#xff0c;从而结合展馆展示的需求&#xff0c;营造出更加有效的氛围&#xff0c;起到优化展示效果的作用。 三维全景虚拟现实技术的应用&#xff0c;能…

05有监督学习——神经网络

线性模型 给定n维输入&#xff1a; x [ x 1 , x 1 , … , x n ] T x {[{x_1},{x_1}, \ldots ,{x_n}]^T} x[x1​,x1​,…,xn​]T 线性模型有一个n维权重和一个标量偏差: w [ w 1 , w 1 , … , w n ] T , b w {[{w_1},{w_1}, \ldots ,{w_n}]^T},b w[w1​,w1​,…,wn​]T,b 输…

面试题(三)

目录 一.Spring 1.Spring IOC & AOP 2.Spring bean (1) 作用域 (2) Spring 中的 bean ⽣命周期 (3) Spring 框架中⽤到了哪些设计模式 二.Mybatis 1.标签 2.Dao接口 3.返回与映射 4.延迟加载 三.Kafka 四.设计模式 1.IO 设计模式 2.Spring 中的设计模式详解…

若依前后端分离版本项目总结笔记

若依前后端分离学习笔试 1.路由问题 注意这个是前端找到你的路由的路径。 2.表格开关按钮快速实现 <el-table-column label"状态" align"center" key"status"><template slot-scope"scope"><el-switchv-model"s…

VS+Qt 自定义Dialog

与QtCreator不同&#xff0c;刚用VS添加Qt Dialog界面有点懵&#xff0c;后整理了下&#xff1a; 1.右击项目&#xff0c;选择“添加-模块”&#xff0c;然后选择“Qt-Qt Widgets Class” 2.选择基类[1]QDialog,更改[2]ui文件名称&#xff0c;修改定义Dialog[3]对应类名&#…

【面试题系列】(一)

Redis有哪些数据结构&#xff1f;其底层是怎么实现的&#xff1f; Redis 系列&#xff08;一&#xff09;&#xff1a;深入了解 Redis 数据类型和底层数据结构 字符串&#xff08;String&#xff09;&#xff1a; 用于存储文本或二进制数据。可以执行字符串的基本操作&#xf…

每日一题 113路径总和||(递归)

题目 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum 22…

【Mybatis源码分析】Mybatis 是如何实现预编译的?

Mybatis 是如何实现预编译的&#xff1f; 一、前言二、源码分析三、总结 一、前言 在介绍 Mybatis 是如何实现预编译之前&#xff0c;需提前知道俩个预备知识&#xff1a; MySQL的运行流程&#xff08;对应的 SQL 会成为一个文本-》查询缓存&#xff08;8.0后没了&#xff09…

CSS中如何实现多列布局?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 多列布局&#xff08;Multi-column Layout&#xff09;⭐ column-count⭐ column-width⭐ column-gap⭐ column-rule⭐ column-span⭐ 示例⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧…

JavaWeb_LeadNews_Day7-ElasticSearch, Mongodb

JavaWeb_LeadNews_Day7-ElasticSearch, Mongodb elasticsearch安装配置 app文章搜索创建索引库app文章搜索思路分析具体实现 新增文章创建索引思路分析具体实现 MongoDB安装配置SpringBoot集成MongoDB app文章搜索记录保存搜索记录思路分析具体实现 查询搜索历史删除搜索历史 搜…

时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化

时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 SGMD分解算法&#xff08;辛几何模态分解&#xff09;&#xff0c;分解结果可视…

再学http-为什么文件上传要转成Base64?

1 前言 最近在开发中遇到文件上传采用Base64的方式上传&#xff0c;记得以前刚开始学http上传文件的时候&#xff0c;都是通过content-type为multipart/form-data方式直接上传二进制文件&#xff0c;我们知道都通过网络传输最终只能传输二进制流&#xff0c;所以毫无疑问他们本…

超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用

超越界限&#xff1a;大模型应用领域扩展&#xff0c;探索文本分类、文本匹配、信息抽取和性格测试等多领域应用 随着 ChatGPT 和 GPT-4 等强大生成模型出现&#xff0c;自然语言处理任务方式正在逐步发生改变。鉴于大模型强大的任务处理能力&#xff0c;未来我们或将不再为每…

33、在SpringBoot项目添加Web组件(Servlet、Filter 和 Listener) 的三种方法

通过Spring Bean 来添加 Servlet、Filter 和 Listener ★ 添加Web组件&#xff08;Servlet、Filter、Listener&#xff09;的三种方式&#xff1a; - 使用Spring Bean添加Servlet、Filter或Listener。- 使用XxxRegistrationBean手动添加Servlet、Filter或Listener。- 使用Clas…

QT6安装完成后,再安装低版本的MinGW或其他组件方式

首先进入点击安装的uinstall Qt 并不是真的卸载 通过下面几步 1&#xff0c;首先登录自己账户 2&#xff0c;然后进入欢迎中&#xff0c;点击“添加和移除组件” 3&#xff0c;然后检索自己需要的安装内容

Unity实现广告滚动播放、循环播放、鼠标切换的效果

效果&#xff1a; 场景结构&#xff1a; 特殊物体&#xff1a;panel下面用排列组件horizent layout group放置多个需要显示的面板&#xff0c;用mask遮罩好。 using System.Collections; using System.Collections.Generic; using DG.Tweening; using UnityEngine; using Unity…

第4篇:vscode+platformio搭建esp32 arduino开发环境

第1篇:Arduino与ESP32开发板的安装方法 第2篇:ESP32 helloword第一个程序示范点亮板载LED 第3篇:vscode搭建esp32 arduino开发环境 1.配置默认安装路径&#xff0c;安装到D盘。 打开环境变量&#xff0c;点击新建 输入变量名PLATFORMIO_CORE_DIR与路径&#xff1a;D:\PLATF…

linux服务TCP参数配置

Linux TCP参数配置 阿里云规范 1.【推荐】高并发服务器建议调小 TCP 协议的 time_wait 超时时间。 说明&#xff1a;操作系统默认 240 秒后&#xff0c;才会关闭处于 time_wait 状态的连接&#xff0c;在高并发访问下&#xff0c;服务器端会因为处于 time_wait 的连接数太多&am…

idea切换Git分支时保存未提交的文件

解决方案 我们现在有三个分支&#xff0c;如下图&#xff1a; 我们目前在tenant分支上进行开发&#xff0c;需要去修复master的Bug&#xff0c;假设我们在tenant分支上修改了一个文件&#xff0c;如下图&#xff1a; 方法一&#xff1a;使用Shelve Changes 1、选中tenant上你不…