亚马逊的CEO Jeff Bezos曾经说过,他的梦想是“如果我有100万个用户,我就要为他们做100万个亚马逊网站”。而智能推荐系统的出现,就是为了实现这个梦想,智能推荐系统解决的是一个信息比对的问题,怎么样基于用户的信息和商品的信息去做一个更好的匹配,为每一个用户实现个性化的推荐结果,这是推荐系统要解决的问题。从“千人一面”到“千人千面”,这个世界因智能推荐系统变得更人性化、更丰富、更美好。
推荐系统=推荐算法+系统工程
《个性化推荐系统开发指南》这本电子书基于PAI构建企业级推荐系统,从推荐算法开始,到系统工程问题讲解,教你构建一个完整的推荐系统。
目录
什么是推荐系统
伴随着互联网应用的发展,人们可以涉猎到更多的资讯。比如说进入到一个淘宝的平台,有非常多的商品,如何将适合用户的商品去触达他,是淘宝需要解决的一个问题。本质上,推荐系统解决的是一个信息比对的问题。怎么样基于用户的信息和商品的信息去做一个更好的匹配,这是推荐系统要解决的问题。
常见的推荐业务场景有两个。一个是基于搜索Query的推荐,比如说,在淘宝平台购买一件商品,Query推荐要基于用户的购买偏好,还有商品的属性去做一个匹配。另一个是基于用户和商品属性的Feed流的推荐,我们采用机器学习推荐模型,它既要学习用户,也要学习商品的属性。
推荐系统召回算法
召回算法的作用是从海量待推荐对象中抽选出待排序的候选集。
下面是目前比较流行的4个算法。
- 协同过滤:基于统计的方式找到相似的item关联关系以及user-item的关联关系
- GraphSage:图神经网络召回算法,基于深度学习框架构建的图算法。可以基于用户和商品特征及行为产出user embedding和item embedding。
推荐系统排序算法
排序算法的作用是针对推荐的候选集进行用户兴趣从强到弱的排序,通常使用机器学习领域的二分类算法解决该问题。
目前比较经典的排序算法是下面列的这4种。
- 一、逻辑回归是应用非常广泛的一种算法。它是目前业内最经典的线性二分类算法,特点是容易上手,对于计算力要求低,模型可解释性好。
- 二,FM算法近一两年来,在很多客户的场景中都得到大规模的应用,效果也不错。它是通过内积的方式增强特征的表现力。
推荐系统线上服务编排
1、业务场景:客户业务潮汐效应很明显,业务高峰基本集中在中午和晚上。
2、方案:基于高扩展弹性业务场景,采用阿里云ACK构建整体推理架构。
3、调用流程:
- 多路召回:物品协同过滤,语义召回,热门及运营策略召回取回上千条候选集。
- 曝光去重:基于该用户阅读历史,去掉已经曝光内容,去掉基于运营策略不能推荐的内容(敏感内容)。
- 排序:推理模块调用排序过程时根据用户id及物料id,获取用户特征及物料特征(Redis)后,分批调用PAI-EAS服务返回排序结果。
作者介绍
阿里云人工智能产品专家傲海,长期从事人工智能平台产品能力建设和商业化业务。伴随阿里云机器学习PAI平台从零起步,逐渐成为IDC、Forrester认证的国内领先的商业化人工智能平台之一。《机器学习实践应用》书作者,阿里云大学讲师。
原文链接
本文为阿里云原创内容,未经允许不得转载。