数据仓库分层存储技术揭秘

简介: 本文介绍数据仓库产品作为企业中数据存储和管理的基础设施,在通过分层存储技术来降低企业存储成本时的关键问题和核心技术。

 

image.png

 

作者 | 沄浩、士远
来源 | 阿里技术公众号

一 背景

据IDC发布的《数据时代2025》报告显示,全球每年产生的数据将从2018年的33ZB增长到2025年的175ZB,平均每天约产生491EB数据。随着数据量的不断增长,数据存储成本成为企业IT预算的重要组成部分。例如1PB数据存储一年,全部放在高性能存储介质和全部放在低成本存储介质两者成本差距在一个量级以上。由于关键业务需高性能访问,因此不能简单的把所有数据存放在低速设备,企业需根据数据的访问频度,使用不同种类的存储介质获得最小化成本和最大化效率。因此,把数据存储在不同层级,并能够自动在层级间迁移数据的分层存储技术成为企业海量数据存储的首选。

本文介绍数据仓库产品作为企业中数据存储和管理的基础设施,在通过分层存储技术来降低企业存储成本时的关键问题和核心技术。

1 什么是分层存储

分层存储顾名思义,就是把数据分为高频访问的热数据和低频访问的冷数据,并分别存储在热数据层和冷数据层,达到性能与成本的平衡。

热数据层采用高性能存储介质,单位成本高,为控制预算一般容量较小,只存储关键业务数据,例如ERP,CRM数据,或者最新的订单数据等。

冷数据层则存储非关键业务数据,例如审计日志,运行日志等,或历史沉淀数据,例如一个月前的订单数据。此部分数据体量大,访问频度低,性能要求不高,因此采用单位成本低,容量大的存储介质来降低成本。同时,随着时间流逝,部分热数据访问频度会降低(一般称为数据降温),此时存储系统能够自动迁移该部分数据到冷数据层来降低成本。

 

image.png

 

2 数据仓库分层存储面临的挑战

数据仓库产品在实现分层存储能力时,面临的几个核心挑战如下:

  • 选择合适的存储介质。存储介质既要满足性能、成本需求,还要满足可靠性、可用性、容量可扩展、运维简单等需求。
  • 业务上的冷热数据,如何在分层存储中定义?即如何描述哪部分是热数据,哪部分是冷数据。
  • 冷热数据如何迁移?随着时间流逝,业务上的热数据降温为冷数据后,数据仓库如何感知温度的变化并执行数据迁移来降低存储成本。
  • 如何加速冷数据的访问?冷数据仍然会被访问,比如因法规政策要求,用户需对三个月前数据进行修订,或者需要对过去一年的数据进行统计分析来进行历史回顾和趋势分析。由于冷数据体量大,查询涉及的数据多,存储介质性能低,如果不进行优化,对冷数据的元信息,内容访问可能出现瓶颈影响业务使用。

二 数据仓库分层存储关键技术解析

本章将以阿里云数据仓库AnalyticDB MySQL版(下文简称ADB)为原型介绍如何在数据仓库产品中实现分层存储,并解决其核心挑战。ADB的整体架构分为三层:

  • 第一层是接入层:由多个前端节点构成,主要负责接入用户查询,进行SQL解析、优化、调度。
  • 第二层是计算引擎层:由多个计算节点组成,负责执行用户查询。
  • 第三层是存储引擎层:由多个存储节点组成,用户数据按Shard切片存储,每个Shard有多个副本保证高可靠和高可用。

 

image.png

 

1 冷热数据存储介质的选择

对于业务上的热数据,需采用高性能存储介质满足其快速查询需求。SSD相对HDD来说,成本较高,但其具有高IOPS和高带宽的特性,因此ADB把热数据层建立在SSD上,并使用数据多副本机制,出现存储节点异常时,通过切换服务节点来保证高可靠和高可用。

业务上的冷数据,一般是历史沉淀的业务数据或日志数据,这些数据体量大,访问频度低,因此容量大、成本低是存储介质的主要选择因素。对于冷数据层,ADB选择建立在阿里云OSS上。阿里云对象存储服务OSS作为阿里云提供的海量、低成本、高持久性的云存储服务,其数据设计持久性不低于99.9999999999%,服务可用性不低于99.995%。OSS提供的这些特性满足了冷数据层对成本和可靠性的需求,同时相对于自己维护HDD磁盘,OSS自身具有容量无限扩展能力,满足海量数据存储需求。并且OSS可以远程访问,因此存储节点的副本间可以共享数据来进一步降低成本。

 

image.png

 

2 冷热数据定义问题

业务自身对冷热数据的定义比较明确。比如企业中一些需要高频访问的CRM、ERP数据均为热数据。而对于审计日志,或数天前的订单数据,其访问频度低,则可定义为冷数据。核心问题是,业务上的这些数据,如何在分层存储中描述其冷热属性并保证存储位置的准确性。例如企业促销活动,大量用户正在线上进行业务交互,此时如果分层存储错误的把客户信息、商品信息等关键数据迁移到冷区,则会引起相关查询性能受损,最终出现客户登录受阻,客户点击失败等业务异常,导致企业受损。ADB解决这个问题的方法是在用户建表时指定存储策略(storage_policy)来精确关联业务上的冷热数据和分层存储中的冷热存储,下面是示例。

全热表

所有数据存储在SSD并且不会降温,适用于全表数据被频繁访问,且对访问性能有较高要求的场景,比如CRM、ERP数据。

Create table t1(id int,dt datetime
) distribute by hash(id) 
storage_policy = 'HOT';

全冷表

所有数据存储在OSS,适用于体量大,访问频度低,需要减少存储成本的场景,比如审计日志数据。

Create table t2(id int,dt datetime
) distribute by hash(id) 
storage_policy = 'COLD';

冷热混合表

适用于数据冷热有明显时间窗口的场景。例如最近7天的游戏日志数据,广告点击数据等需高频访问,作为热数据存储,而7天前的数据可降温为冷数据,低成本存储。

注:冷热混合表需配合表的分区使用。除storage_policy外,还需指定hot_partition_count属性。hot_partition_count指按分区值倒序,取最大N个分区为热分区,其余为冷分区。下例中,表按天分区,hot_partition_count = 7表示分区值最大的7个分区,也就是最近7天的数据为热数据。
Create table t3(id int,dt datetime
) distribute by hash(id) 
partition by value(date_format(dt, '%Y%m%d'))
lifecycle 365
storage_policy = 'MIXED' hot_partition_count = 7;

修改冷热策略

随业务的变化,表的访问特性可能发生变化,企业可以随时修改表的存储策略来适应新的存储需求。

(1)由热表修改为冷表:

Alter table t1 storage_policy = 'COLD';

(2)修改热分区的个数,修改为最近14天的数据为热数据:

Alter table t3 storage_policy = 'MIXED' hot_partition_count = 14;

3 冷热数据自动迁移问题

随时间流逝,热数据的访问频度降低,降温为冷数据。比如一些日志数据,在数天后就很少再访问,分层存储需把这部分数据由热数据层迁移到冷数据层来降低成本。这里的核心问题是如何知道哪部分数据的温度降低了需要迁移?下面通过一个冷热混合表,来说明ADB解决该问题的方法。如下是一张日志表,最近三天数据为热数据,满足高性能在线查询需求,三天前数据为冷数据,低成本存储并满足低频访问需求。

Create table Event_log (event_id bigint,dt datetime,event varchar
) distribute by hash(event_id)
partition by value(date_format(dt, '%Y%m%d')) lifecycle 365
storage_policy = 'MIXED' hot_partition_count = 3;

在本例中,表首先按天分区。

partition by value(date_format(dt, '%Y%m%d')) lifecycle 365

并定义冷热策略为混合模式,最新3天的数据是热数据。

storage_policy = 'MIXED' hot_partition_count = 3

在ADB中,冷热数据以分区为最小粒度,即一个分区要么在热区,要么在冷区,然后通过热分区窗口来判定某个分区是否为热分区(表属性中的hot_partition_count定义了热分区窗口的大小)。在本例中,假定当前日期是3月4日,则3月2日、3日、4日这三天的数据处于热分区窗口中,因此是热分区。当写入3月5日的数据后,则3月3日、4日、5日这三天数据组成了新的热分区窗口,3月2日数据降温为冷数据,后台会自动执行热冷迁移,把3月2日的数据由热区迁移到冷区。通过热分区窗口,客户根据业务场景可以明确定义冷热边界,一旦数据降温则自动迁移。

 

image.png

 

4 冷数据访问性能问题

冷数据存储在OSS上,OSS是远程存储系统并通过网络访问,延迟较高。例如判断文件是否存在,获取文件长度等元信息操作,单次交互的访问延迟在毫秒级别。同时,OSS带宽有限,一个账号下整体只有GB级别带宽,提供的整体QPS也只有数十万,超过后OSS就会限流。数据仓库内部存储着大量文件,如果不对OSS访问做优化,则会出现查询异常。例如查询可能涉及数百万个文件,仅仅获取这些文件的元信息就会达到OSS的QPS上限,最终导致查询超时等异常,因此需对OSS的访问进行优化来保证业务的可用性并提高查询性能。如下对元信息访问优化和数据访问优化分别介绍。

元信息访问优化

ADB作为数据仓库,底层存储了大量的数据文件和索引文件。ADB优化元信息访问的方法是对文件进行归档,即把一个分区内的所有文件打包在一个归档文件中,并提供一层类POSIX的文件访问接口,通过这个接口去读取文件内容。

 

image.png

 

归档文件的Meta里内存储了每个子文件的偏移和长度等元信息。读取时,先加载归档文件的Meta,只需要一次交互即可拿到所有子文件元信息,交互次数降低数百倍。为进一步加速,ADB在存储节点的内存和SSD上分别开辟了一小块空间缓存归档文件的Meta,加载过即无需再访问OSS获取元信息。同时,归档后只需一个输入流便可读取所有子文件数据内容,避免为每个子文件单独开启输入流的开销。

数据访问优化

查询中,无论是扫描索引,还是读取数据块,都需要读取OSS上文件的内容,而OSS无论访问性能还是访问带宽都有限。为加速文件内容的读取,ADB存储节点会自动利用SSD上的一块空间做数据Cache,且Cache的上层提供了类POSIX的文件访问接口,数据扫描算子(Table Scanner)可以像访问普通文件一样访问Cache中的内容。

 

image.png

 

查询中对OSS的所有访问(索引、数据等)都可借助SSD Cache加速,只有当数据不在Cache中时才会访问OSS。针对这块Cache,ADB还做了如下优化:

  • 多粒度的Cache Block,加载元信息时使用较小的Block,加载数据时使用较大的Block,以此提高Cache空间利用率。
  • 元数据预热,自动加载数据和索引的元数据到Cache中并锁定,以实现元数据高效访问。
  • 基于冷热访问队列的类LRU算法,实现无锁化高性能换入换出。
  • 自动IO合并,相邻数据的访问合并为一个请求,减少与OSS的交互次数。

三 总结

随着企业数据量的不断增长,存储成本成为企业预算中的重要组成部分,数据仓库作为企业存储和管理数据的基础设施,通过分层存储技术很好的解决了企业中存储成本与性能的平衡问题。对于分层存储技术中的关键挑战,本文以云原生数据仓库AnalyticDB MySQL为原型,介绍了其如何通过冷热策略定义,热分区窗口,文件归档,SSD Cache来解决冷热数据定义,冷热数据迁移,冷数据访问优化等关键问题。

原文链接

本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/513761.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cups支持的打印机列表_网络存储让你的打印机瞬间变无线,打印文件不用愁

无论是公司的文件、合同还是学校的教材作业总有需要打印的而且还需要满足手机、电脑等设备的无线打印不然文件来回拷贝实在是太麻烦了只要打印机搭配群晖NAS旧打印机也能上岗再就业轻松实现无线打印!话不多说,这就开始教大家如何使用!先确认一…

python同时输出多个值_怎样在python中输出多个数组元素?

展开全部 如果2113要输出多个列表元素,实际上是列表的分片5261或者说是切片。 以下代码运4102行通过:12list [a, b, mpilgrim, z, example]print(\n, list[0:3]) 运行效1653果:1.python输出一维矩阵或numpy数组中的非0元素 import numpy as …

网游云上网络优化方案

简介: 网游云上网络优化方案1. 游戏行业背景 1.1 行业概况 2019全球数字游戏营收1094亿美元,其中中国市场328亿美元。国内游戏⽤户数6.5亿;移动端 (60%)>PC端>主机。移动游戏占⽐逐年增⻓已成为绝对的主流。国内公司近3万,近…

云栖大会展出两款一体机,搭载新一代无影融合架构

10月18日云栖大会开放日上,阿里云基于新一代无影架构的两款一体机已对观众展出。两款新品分为23.8寸标准版和27寸Pro版,Pro版为手绘场景配有触控屏和触控笔,官方介绍为首款设计师云电脑。 在云栖大会展区,观众已经可以对一体机进…

ansys如何删除线_绘画新手不懂如何用ps提取线稿?教你用PS提取自己喜欢的线稿!...

绘画新手不懂如何用ps提取线稿?初学者如何自学绘画?自学板画难吗?怎样才能学习好绘画?想必这些都是绘画初学者们经常在想的问题吧,就是不知道如何才能学习好绘画,然后绘画出自己想要画的东西那么今天灵猫课…

Service Mesh 从“趋势”走向“无聊”

简介: 过去一年,阿里巴巴在 Service Mesh 的探索道路上依旧扎实前行,这种坚定并非只因坚信 Service Mesh 未来一定是云计算基础技术的关键组成部分,还因需要借这一技术趋势去偿还过去所积累下来的技术债(“技术债”并非…

python增加一列数据_python数据怎么添加列?

python在DataFrame数据中添加列的方法: 1、使用concat方法在数据中添加列 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接。…

开源 1 年半 star 破 1.2 万的 Dapr 是如何在阿里落地的?

简介: Dapr 是 2019 年 10 月微软开源的可移植、事件驱动分布式运行时,它使开发人员能够轻松地构建运行在云平台和边缘的弹性而微服务化的无状态和有状态的应用程序,从而降低基于微服务架构构建现代云原生应用的准入门槛。 作者 | 敖小剑 来源…

cron 每年执行一次_crontab服务执行定时脚本,在指定时间内让php执行处理业务逻辑...

技小白 2019-12-19 11:45:33crontab-e编辑某个用户的cron服务设置执行脚本crontab-l列出某个用户cron服务列表信息crontab-r删除某个用户的cron服务定时任务crontab格式分小时日月星期命令******0-590-231-311-120-6command注:“*”代表取值范围内的数字“/”代表每…

Fluid 给数据弹性一双隐形的翅膀 -- 自定义弹性伸缩

简介: 弹性伸缩作为 Kubernetes 的核心能力之一,但它一直是围绕这无状态的应用负载展开。而 Fluid 提供了分布式缓存的弹性伸缩能力,可以灵活扩充和收缩数据缓存。 它基于 Runtime 提供了缓存空间、现有缓存比例等性能指标, 结合自身对于 Run…

ff14注册完服务器可以转,FF14怎么转服 FF14转服条件一览-游侠网

你知道FF14怎么转服吗?如果想要换服务器,都有哪些特别的要求呢?下面为大家带来的是FF14转服条件一览,大家一起来了解一下吧。转服条件一览跨区角色转移试行规则1、本次仅开放陆行鸟区转向莫古力区指定服务器功能。我们将在莫古力区…

业务团队如何统一架构设计风格?

简介: 首次上线应用,面对业务框架搭建你是否曾感到无从下手?维护线上应用,面对大量历史包袱你是否正避坑不及深陷泥潭?为何同样是业务应用,不同人的设计风格千差万别?为何最初的设计经过多个迭代…

一文详解物化视图改写

简介: 本文主要介绍什么是物化视图,以及如何实现基于物化视图的查询改写。 作者:阿里云数据库OLAP产品部 云曦 预计算和缓存是计算机领域提高性能以及降低成本的最常见的手段之一。对于那些经常重复的请求,如果可以通过缓存回答…

close_wait过多服务器无响应,记一次大量CLOSE_WAIT连接导致的服务宕机

最近线上服务出现了一段时间的无法响应,在此总结一下问题的排查过程。监控信息监控显示CPU和内存没有异常波动,TCP连接中有大量的CLOSE_WAIT状态的连接。看一下TCP连接断开的过程:也就是说客户端发起了断开连接的包,服务端收到数据…

【Java JVM】Java 实例对象的访问定位

Java 程序会通过栈上的 reference 数据来操作堆上的具体对象。 但是 reference 类型在《Java虚拟机规范》里面只规定了它是一个指向对象的引用, 并没有定义这个引用应该通过什么方式去定位, 访问到堆中对象的具体位置, 所以对象访问方式也是由虚拟机实现而定的,主流…

独家对话阿里云函数计算负责人不瞋:你所不知道的 Serverless

简介: 如果你是一名互联网研发人员,那么极有可能了解并应用过 Serverless 这套技术体系。纵观 Serverless 过去十年,它其实因云而生,也在同时改变云的计算方式。如果套用技术成熟度曲线来描述的话,那么它已经走过了萌芽…

nginx location 匹配 多个规则_三道小练习助你弄懂 Nginx location 匹配

在 Nginx 中我们可以通过配置 location 指令块,来决定一个请求 url 如何处理。如果我们编写了多条 location 指令块,如何保证各个 location 不会产生冲突?如何理清 location 的匹配顺序?带着这两个问题,我们先来做几道…

手机淘宝轻店业务 Serverless 研发模式升级实践

简介: 随着 Serverless 在业界各云平台落地,阿里内部 Serverless 研发平台、各种研发模式也在业务中逐步落地,如火如荼。在此契机下,淘系团队启动了轻店 Serverless 研发模式升级战役,基于阿里集团底层设施建设、上层技…

服务器 独立显卡 显示不出来,dell服务器R720+独立显卡GTX1650,进不去系统,UEIF报错...

戴尔服务器dell R720的显卡问题。操作系统是win2008R2。现在是安装的华硕750ti,运行ok,多个屏幕。买了技嘉gtx1650,刚出的显卡安装了。在集成显卡情况下打了驱动,设备管理显示识别了。但是切换到GTX1650显卡下启动系统&#xff0c…

饿了么EMonitor演进史

简介: 可观测性作为技术体系的核心环节之一,跟随饿了么技术的飞速发展,不断自我革新。 序言 时间回到2008年,还在上海交通大学上学的张旭豪、康嘉等人在上海创办了饿了么,从校园外卖场景出发,饿了么一步一…