庖丁解牛|图解 MySQL 8.0 优化器查询转换篇

简介: 本篇介绍子查询、分析表和JOIN的复杂转换过程

一  背景和架构

在《庖丁解牛-图解MySQL 8.0优化器查询解析篇》一文中我们重点介绍了MySQL最新版本8.0.25关于SQL基本元素表、列、函数、聚合、分组、排序等元素的解析、设置和转换过程,本篇我们继续来介绍更为复杂的子查询、分区表和JOIN的复杂转换过程,大纲如下:

Transformation

  • remove_redundant_subquery_clause :Permanently remove redundant parts from the query if 1) This is a subquery 2) Not normalizing a view. Removal should take place when a query involving a view is optimized, not when the view is created.
  • remove_base_options:Remove SELECT_DISTINCT options from a query block if can skip distinct
  • resolve_subquery :Resolve predicate involving subquery, perform early unconditional subquery transformations
  • Convert subquery predicate into semi-join, or
  • Mark the subquery for execution using materialization, or
  • Perform IN->EXISTS transformation, or
  • Perform more/less ALL/ANY -> MIN/MAX rewrite
  • Substitute trivial scalar-context subquery with its value
  • transform_scalar_subqueries_to_join_with_derived:Transform eligible scalar subqueries to derived tables.
  • flatten_subqueries :Convert semi-join subquery predicates into semi-join join nests. Convert candidate subquery predicates into semi-join join nests. This transformation is performed once in query lifetime and is irreversible.
  • apply_local_transforms :
  • delete_unused_merged_columns : If query block contains one or more merged derived tables/views, walk through lists of columns in select lists and remove unused columns.
  • simplify_joins : Convert all outer joins to inner joins if possible.
  • prune_partitions :Perform partition pruning for a given table and condition.
  • push_conditions_to_derived_tables :Pushing conditions down to derived tables must be done after validity checks of grouped queries done by apply_local_transforms();
  • Window::eliminate_unused_objects:Eliminate unused window definitions, redundant sorts etc.

二  详细转换过程

1  解析子查询(resolve_subquery)

解析条件中带有子查询的语句,做一些早期的无限制的子查询转换,包括:

  • 标记subquery是否变成semi-join

转换判断条件

  • 检查OPTIMIZER_SWITCH_SEMIJOIN和HINT没有限制
  • 子查询是IN/=ANY和EXIST subquery的谓词
  • 子查询是简单查询块而不是UNION
  • 子查询无隐形和显性的GROUP BY
  • 子查询没有HAVING、WINDOW函数
  • Resolve的阶段是Query_block::RESOLVE_CONDITION和Query_block::RESOLVE_JOIN_NEST并且没有用到最新的Hyper optimizer优化器。
  • 外查询块可以支持semijoins
  • 至少要一个表,而不是类似"SELECT 1"
  • 子查询的策略还没有指定Subquery_strategy::UNSPECIFIED
  • 父查询也至少有一个表
  • 父查询和子查询都不能有straight join
  • 父查询块不禁止semijoin
  • IN谓词返回值是否是确定的,不是RAND
  • 根据子查询判断结果是否需要转成true还是false以及是否为NULL,判断是可以做antijoin还是semijoin
  • Antijoin是可以支持的,或者是semijoin
  • offset和limit对于semjoin是有效的,offset是从第一行开始,limit也不是0

设置Subquery_strategy::CANDIDATE_FOR_SEMIJOIN并添加sj_candidates

  • 标记subquery是否执行时采用materialization方案
  • 如果不符合转换semijoin,尝试使用物化方式,转换判断条件
  • Optimzier开关subquery_to_derived=on
  • 子查询是IN/=ANY or EXISTS谓词
  • 子查询是简单查询块而不是UNION
  • 如果是[NOT] EXISTS,必须没有聚合
  • Subquery谓词在WHERE子句(目前没有在ON子句实现),而且是ANDs or ORs的表达式tree
  • 父查询块支持semijoins
  • 子查询的策略还没有指定Subquery_strategy::UNSPECIFIED
  • 父查询也至少有一个表,然后可以做LEFT JOIN
  • 父查询块不禁止semijoin
  • IN谓词返回值是否是确定的,不是RAND
  • 根据子查询判断结果是否需要转成true还是false以及是否为NULL,判断是可以做antijoin还是semijoin
  • 不支持左边参数不是multi-column子查询(WHERE (outer_subq) = ROW(derived.col1,derived.col2))
  • 该子查询不支持转换为Derived table(m_subquery_to_derived_is_impossible)
  • 设置Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE并添加sj_candidates
  • 如果上面两个策略无法使用,根据类型选择transformer
  • Item_singlerow_subselect::select_transformer
  • 对于简单的标量子查询,在查询中直接用执行结果代替
select * from t1 where a = (select 1); 
=>
select * from t1 where a = 1;

640.jpg

Item_in_subselect/Item_allany_subselect::select_transformer->select_in_like_transformer

  • select_in_like_transformer函数来处理 IN/ALL/ANY/SOME子查询转换transformation
  • 处理"SELECT 1"(Item_in_optimizer)

  • 如果目前还没有子查询的执行方式,也就是无法使用semijoin/antijoin执行的子查询,会做IN->EXISTS的转换,本质是在物化执行和迭代式循环执行中做选择。IN语法代表非相关子查询仅执行一次,将查询结果物化成临时表,之后需要结果时候就去物化表中查找;EXISTS代表对于外表的每一条记录,子查询都会执行一次,是迭代式循环执行。子查询策略设定为Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT
  • 重写single-column的IN/ALL/ANY子查询(single_value_transformer)
oe $cmp$ (SELECT ie FROM ... WHERE subq_where ... HAVING subq_having)
=>
- oe $cmp$ (SELECT MAX(...) )  // handled by Item_singlerow_subselect
- oe $cmp$ \<max\>(SELECT ...)   // handled by Item_maxmin_subselect
​
fails=>Item_in_optimizer
- 对于已经是materialized方案,不转换
- 通过equi-join转换IN到EXISTS
  • 如果是ALL/ANY单值subquery谓词,尝试用MIN/MAX子查询转换
SELECT * FROM t1 WHERE a < ANY (SELECT a FROM t1); 
=>
SELECT * FROM t1 WHERE a < (SELECT MAX(a) FROM t1)

640.png

  • 不满足上面,调用single_value_in_to_exists_transformer转换IN到EXISTS
  • 转换将要将子查询设置为相关子查询,设置UNCACHEABLE_DEPENDENT标识
  • 如果子查询包含聚合函数、窗口函数、GROUP语法、HAVING语法,将判断条件加入到HAVING子句中,另外通过ref_or_null_helper来区分NULL和False的结果,如需要处理NULL IN (SELECT ...)还需要封装到Item_func_trig_cond触发器中。
SELECT ... FROM t1 WHERE t1.b IN (SELECT <expr of SUM(t1.a)> FROM t2)
=>
SELECT ... FROM t1 WHERE t1.b IN (SELECT <expr of SUM(t1.a)> FROM t2[trigcond] HAVING t1.b=ref-to-<expr of SUM(t1.a)>)

640-1.png

  • 如果子查询不包含聚合函数、窗口函数、GROUP语法,会放在WHERE查询条件中,当然如果需要处理NULL情况还是要放入HAVING子句(Item_func_trig_cond+Item_is_not_null_test)。
不需要区分NULL和FALSE的子查询:
​
SELECT 1 FROM ... WHERE (oe $cmp$ ie) AND subq_where
​
需要区分的子查询:
SELECT 1 FROM ...WHERE subq_where AND trigcond((oe $cmp$ ie) OR (ie IS NULL))HAVING trigcond(@<is_not_null_test@>(ie))
  • JOIN::optimize()会计算materialization和EXISTS转换的代价进行选择,设置m_subquery_to_derived_is_impossible = true
  • ROW值转换,通过Item_in_optimizer,不支持ALL/ANY/SOME(row_value_transformer)
  • Item_in_subselect::row_value_in_to_exists_transformer
for (each left operand)create the equi-join conditionif (is_having_used || !abort_on_null)create the "is null" and is_not_null_test itemsif (is_having_used)add the equi-join and the null tests to HAVINGelseadd the equi-join and the "is null" to WHEREadd the is_not_null_test to HAVING
  • 没有HAVING表达式
(l1, l2, l3) IN (SELECT v1, v2, v3 ... WHERE where) =>
EXISTS (SELECT ... WHERE where and(l1 = v1 or is null v1) and(l2 = v2 or is null v2) and(l3 = v3 or is null v3)[ HAVING is_not_null_test(v1) andis_not_null_test(v2) andis_not_null_test(v3)) ] <-- 保证不为NULL可以去掉HAVING
  • 有HAVING表达式
(l1, l2, l3) IN (SELECT v1, v2, v3 ... HAVING having) =>
EXISTS (SELECT ... HAVING having and(l1 = v1 or is null v1) and(l2 = v2 or is null v2) and(l3 = v3 or is null v3) andis_not_null_test(v1) andis_not_null_test(v2) andis_not_null_test(v3))

2  转换的标量子查询转换成Derived Table(transform_scalar_subqueries_to_join_with_derived)

该特性是官方在8.0.16中为了更好的支持Secondary Engine(Heapwave)的分析下推,增强了子查询的转换能力。可以先直观的看下转换和不转换的执行计划的不同:

root:test> set optimizer_switch = 'subquery_to_derived=off';
Query OK, 0 rows affected (0.00 sec)
​
root:test> EXPLAIN SELECT b, MAX(a) AS ma FROM t4 GROUP BY b HAVING ma < (SELECT MAX(t2.a) FROM t2 WHERE t2.b=t4.b);
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type        | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra           |
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
|  1 | PRIMARY            | t4    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   10 |   100.00 | Using temporary |
|  2 | DEPENDENT SUBQUERY | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |    33.33 | Using where     |
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
2 rows in set, 3 warnings (0.00 sec)
​
root:test> set optimizer_switch = 'subquery_to_derived=on';
Query OK, 0 rows affected (0.00 sec)
​
root:test> EXPLAIN SELECT b, MAX(a) AS ma FROM t4 GROUP BY b HAVING ma < (SELECT MAX(t2.a) FROM t2 WHERE t2.b=t4.b);
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table      | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                      |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
|  1 | PRIMARY     | t4         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   10 |   100.00 | Using temporary                            |
|  1 | PRIMARY     | <derived2> | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |   100.00 | Using where; Using join buffer (hash join) |
|  2 | DERIVED     | t2         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |   100.00 | Using temporary                            |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
3 rows in set, 3 warnings (0.01 sec)
  • transform_scalar_subqueries_to_join_with_derived具体转换的过程如下:
  • 首先从JOIN条件、WHERE条件、HAVING条件和SELECT list中收集可以转换的标量子查询(Item::collect_scalar_subqueries)。
  • 遍历这些子查询,判断是否可以增加一个额外的转换(transform_grouped_to_derived):把隐性的GROUP BY标量子查询变成Derived Table。
SELECT SUM(c1), (SELECT SUM(c1) FROM t3) scalar FROM t1;
转换为=>
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0LEFT JOIN(SELECT SUM(b) AS scalar FROM t3) AS derived1ON TRUE
执行计划如下:
explain SELECT SUM(a), (SELECT SUM(c1) FROM t3) scalar FROM t1;
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table      | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                      |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
|  1 | PRIMARY     | <derived3> | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | NULL                                       |
|  1 | PRIMARY     | <derived4> | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where; Using join buffer (hash join) |
|  4 | DERIVED     | t3         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | NULL                                       |
|  3 | DERIVED     | t1         | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    2 |   100.00 | NULL                                       |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
  • 收集唯一的聚合函数Item列表(collect_aggregates),这些Item将会被新的Derived Table的列代替。
  • 还需要添加所有引用到这些Item的fields,包括直接在SELECT列表的,Window函数参数、ORDER by、Partition by包含的,还有该查询块中ORDER BY的列,因为他们都会引动到Derived Table里。
  • 创建Derived Table需要的Query_expression/Query_block(create_query_expr_and_block)。
  • 添加Derived Table到查询块和top_join_list中。
  • 保留旧的子查询单元块,如果包含可以转化的Derived的移到Derived Table下面的Query_block,如果不包含,保留到原来的子查询块中。
  • 将之前的聚合函数Item列表插入到Derived Table的查询块中。
  • 收集除GROUP AGG表达式中的列,由于这些fields已经移动到Derived Table中,删除不合理的fields引用。
  • 收集所有唯一的列和View的引用后,将他们加到新的Derived Table列表中。
  • 对新的新的Derived Table进行flatten_subqueries/setup_tables
  • 重新resolve_placeholder_tables,不处理进行转换后的子查询。
  • 处理Derived Table中,新加入的HAVING条件中的聚合函数Item,并通过Item_aggregate_refs引用到new_derived->base_ref_items而不是之前的父查询块base_ref_items。
  • 永久代替父查询块中的聚合函数列表,变成Derived Table的列,并删除他们。
  • 之前保存和加入到Derived Table的唯一的列和View的引用,也要替换新的fields代替他们的引用。

640-2.png

  • 但目前不支持HAVING表达式中包含该子查询,其实也是可以转换的。
SELECT SUM(a), (SELECT SUM(b) FROM t3) scalar
FROM t1
HAVING SUM(a) > scalar;
转换为=>
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0LEFT JOIN(SELECT SUM(b) AS scalar FROM t3) AS derived1ON TRUE
WHERE derived0.sum > derived1.scalar;
  • 接下来遍历所有可以转换的子查询,把他们转换成derived tables,并替换相应的表达式变成列(transform_subquery_to_derived)。
  • 生成derived table的TABLE_LIST(synthesize_derived)。
  • 将可以移动到derived table的where_cond设置到join_cond上。
  • 添加derived table到查询块的表集合中。
  • decorrelate_derived_scalar_subquery_pre
  • 添加非相关引用列(NCF)到SELECT list,这些条件被JOIN条件所引用,并且还有另外一个fields包含了外查询相关的列,我们称之为'lifted_where'
  • 添加COUNT(*)到SELECT list,这样转换的查询块可以进行cardinality的检查。比如没有任何聚合函数在子查询中。如果确定包含聚合函数,返回一行一定是NCF同时在GROUP BY列表中。
  • 添加NCF到子查询的GROUP列表中,如果已经在了,需要加到最后,如果发生GROUP BY的列由于依赖性检查失败,还要加Item_func_any_value(非聚合列)到SELECT list。对于NCF会创建 derived.field和derived.`count(field)` 。
  • 设置物化的一些准备(setup_materialized_derived)。
  • decorrelate_derived_scalar_subquery_post:
  • 创建对应的'lifted_fields'。
  • 更新JOIN条件中相关列的引用,不在引用外查询而换成Derived table相关的列。
  • 代替WHERE、JOIN、HAVING条件和SELECT list中的子查询的表达式变成对应的Derived Table里面列。

下面图解该函数的转换过程和结果:

640-3.png

640-4.png

3  扁平化子查询(flatten_subqueries)

该函数主要是将Semi-join子查询转换为nested JOIN,这个过程只有一次,并且不可逆。

  • 简单来讲步骤可以简化理解为:
  • 创建SEMI JOIN (it1 ... itN)语以部分,并加入到外层查询块的执行计划中。
  • 将子查询的WHERE条件以及JOIN条件,加入到父查询的WHERE条件中。
  • 将子查询谓词从父查询的判断谓词中消除。
  • 由于MySQL在一个query block中能够join的tables数是有限的(MAX_TABLES),不是所有sj_candidates都可以做因此做flatten_subqueries 的,因此需要有优先级决定的先后顺序先unnesting掉,优先级规则如下:
  • 相关子查询优先于非相关的
  • inner tables多的子查询大于inner tables少的
  • 位置前的子查询大于位置后的
subq_item->sj_convert_priority =(((dependent * MAX_TABLES_FOR_SIZE) +  // dependent subqueries firstchild_query_block->leaf_table_count) *65536) +           // then with many tables(65536 - subq_no);  // then based on position
  • 另外,由于递归调用flatten_subqueries是bottom-up,依次把下层的子查询展开到外层查询块中。
    for SELECT#1 WHERE X IN (SELECT #2 WHERE Y IN (SELECT#3)) :
​Query_block::prepare() (select#1)-> fix_fields() on IN condition-> Query_block::prepare() on subquery (select#2)-> fix_fields() on IN condition-> Query_block::prepare() on subquery (select#3)<- Query_block::prepare()<- fix_fields()-> flatten_subqueries: merge #3 in #2<- flatten_subqueries<- Query_block::prepare()<- fix_fields()-> flatten_subqueries: merge #2 in #1
  • 遍历子查询列表,删除Item::clean_up_after_removal标记为Subquery_strategy::DELETED的子查询,并且根据优先级规则设置sj_convert_priority。根据优先级进行排序。
  • 遍历排序后的子查询列表,对于Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE策略的子查询,转换子查询([NOT] {IN, EXISTS})为JOIN的Derived table(transform_table_subquery_to_join_with_derived)
FROM [tables] WHERE ... AND/OR oe IN (SELECT ie FROM it) ...
=>
FROM (tables) LEFT JOIN (SELECT DISTINCT ie FROM it) AS derivedON oe = derived.ie WHERE ... AND/OR derived.ie IS NOT NULL ...
  • 设置策略为Subquery_strategy::DERIVED_TABLE
  • semijoin子查询不能和antijoin子查询相互嵌套,或者外查询表已经超过MAX_TABLE,不做转换,否则标记为Subquery_strategy::SEMIJOIN策略。
  • 判断子查询的WHERE条件是否为常量。如果判断条件永远为FALSE,那么子查询结果永远为空。该情况下,调用Item::clean_up_after_removal标记为Subquery_strategy::DELETED,删除该子查询。
  • 如果无法标记为Subquery_strategy::DELETED/设置Subquery_strategy::SEMIJOIN策略的重新标记会Subquery_strategy::UNSPECIFIED继续下一个。
  • 替换外层查询的WHERE条件中子查询判断的条件(replace_subcondition)
  • 子查询内条件并不永远为FALSE,或者永远为FALSE的情况下,需要改写为antijoin(antijoin情况下,子查询结果永远为空,外层查询条件永远通过)。此时将条件改为永远为True。
  • 子查询永远为FALSE,且不是antijoin。那么将外层查询中的条件改成永远为False。
  • Item_subselect::EXISTS_SUBS不支持有聚合操作
  • convert_subquery_to_semijoin函数解析如下模式的SQL
  • IN/=ANY谓词
  • 如果条件满足解关联,解关联decorrelate_condition
  • 添加解关联的内表表达式到 SELECT list
  • 收集FROM子句中的外表相关的 derived table或join条件
  • 去掉关联标识UNCACHEABLE_DEPENDENT,更新used table
  • Derived table子查询增加SELECT_DISTINCT标识
  • 转换子查询成为一个derived table,并且插入到所属于的查询块FROM后(transform_subquery_to_derived)
  • 创建derived table及其join条件
  • 遍历父查询块的WHERE,替换该子查询的Item代替成derived table(replace_subcondition)
  • 遍历排序后的子查询列表,对于Subquery_strategy::CANDIDATE_FOR_SEMIJOIN策略的子查询。
  • 判断是否可以转换为semijoin
  • 遍历排序后的子查询列表,对于Subquery_strategy::SEMIJOIN的子查询,开始转换为semijoin/antijoin(convert_subquery_to_semijoin)
  • convert_subquery_to_semijoin函数解析如下模式的SQL
  • IN/=ANY谓词
SELECT ...FROM ot1 ... otNWHERE (oe1, ... oeM) IN (SELECT ie1, ..., ieMFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) SJ (it1 ... itK)ON (oe1, ... oeM) = (ie1, ..., ieM)[AND inner-cond][WHERE outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • EXISTS谓词
SELECT ...FROM ot1 ... otNWHERE EXISTS (SELECT expressionsFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) SJ (it1 ... itK)[ON inner-cond][WHERE outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • NOT EXISTS谓词
SELECT ...FROM ot1 ... otNWHERE NOT EXISTS (SELECT expressionsFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) AJ (it1 ... itK)[ON inner-cond][WHERE outer-cond AND is-null-cond(it1)][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • NOT IN谓词
SELECT ...FROM ot1 ... otNWHERE (oe1, ... oeM) NOT IN (SELECT ie1, ..., ieMFROM it1 ... itK[WHERE inner-cond])[AND outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>SELECT ...FROM (ot1 ... otN) AJ (it1 ... itK)ON (oe1, ... oeM) = (ie1, ..., ieM)[AND inner-cond][WHERE outer-cond][GROUP BY ...] [HAVING ...] [ORDER BY ...]
  • 查找可以插入semi-join嵌套和其生成的条件的位置,比如对于 t1 LEFT JOIN t2, embedding_join_nest为t2,t2也可以是nested,如t1 LEFT JOIN (t2 JOIN t3))
  • 生成一个新的semijoin嵌套的TABLE_LIST表
  • 处理Antijoin
  • 将子查询中潜在的表合并到上述join表(TABLE_LIST::merge_underlying_tables)
  • 将子查询的叶子表插入到当前查询块的叶子表后面,重新设置子查询的叶子表的序号和依赖的外表。将子查询的叶子表重置。
  • 如果是outer join的话,在join链表中传递可空性(propagate_nullability)
  • 将内层子查询中的关联条件去关联化,这些条件被加入到semijoin的列表里。这些条件必须是确定的,仅支持简单判断条件或者由简单判断条件组成的AND条件(Query_block::decorrelate_condition)
  • 判断左右条件是否仅依赖于内外层表,将其表达式分别加入到semijoin内外表的表达式列表中(decorrelate_equality)
  • 解关联内层查询的join条件(Query_block::decorrelate_condition)
  • 移除该子查询表达式在父查询的AST(Query_express::exclude_level)
  • 根据semi-join嵌套产生的WHERE/JOIN条件更新对应的table bitmap(Query_block::fix_tables_after_pullout)
  • 将子查询的WHERE条件上拉,更新使用表的信息(Item_cond_and::fix_after_pullout())
  • 根据semijoin的条件列表创建AND条件,如果有条件为常量True,则去除该条件;如果常量为False,则整个条件都去除(Query_block::build_sj_cond)
  • 将创建出来的semijoin条件加入到外层查询的WHERE条件中
  • 最后遍历排序后的子查询列表,对于没有转换的子查询,对于Subquery_strategy::UNSPECIFIED的策略,执行IN->EXISTS改写(select_transformer),如果确实原有的子查询已经有替代的Item,调用replace_subcondition解析并把他们加入到合适的WHERE或者ON子句。
  • 清除所有的sj_candidates列表
  • Semi-join有5中执行方式,本文并不介绍Optimizer和Execution过程,详细可以参考引用文章中关于semijoin的介绍,最后引入下控制semijoin优化和执行的优化器开关,其中semijoin=on/off是总开关。
SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: ......materialization=on,semijoin=on,loosescan=on,firstmatch=on,subquery_materialization_cost_based=on,......
  • 下图举例说明该转换过程:
SELECT * FROM t1 WHERE t1.a in (SELECT t2.c1 FROM t2 where t2.c1 > 0);
=>
/* select#1 */
SELECT `t1`.`a` AS `a`
FROM `t1`
SEMI JOIN (`t2`)
WHERE ((`t1`.`a` = `t2`.`c1`) and (`t2`.`c1` > 0))
执行计划如下:
explain SELECT * FROM t1 WHERE t1.a in (SELECT t2.c1 FROM t2 where t2.c1 > 0);
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                                     |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+
|  1 | SIMPLE      | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    1 |   100.00 | Using where; Start temporary                              |
|  1 | SIMPLE      | t1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    2 |    50.00 | Using where; End temporary; Using join buffer (hash join) |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+

640-5.png

4  应用当前查询块转换(apply_local_transforms)

该函数在flattern subqueries之后,bottom-up调用,主要分几个步骤:

删除无用列(delete_unused_merged_columns)

如果查询块已经删除了一些derived tables/views,遍历SELECT列表的列,删除不必要的列

简化JOIN(simplify_joins)

该函数会把Query_block中的top_join_list的嵌套join的简化为扁平化的join list。嵌套连接包括table1 join table2,也包含table1, (table2, table3)这种形式。如果所示的简化过程:

640-6.png

分区表的静态剪枝(prune_partitions)

由于剪枝根据HASH/RANGE/LIST及二级分区都有不同,这里简单介绍下剪枝过程,现有prune_partitions是在prepare和optimize阶段会被调用,某些常量子查询被评估执行完。

struct TABLE {......    partition_info *part_info{nullptr}; /* Partition related information *//* If true, all partitions have been pruned away */bool all_partitions_pruned_away{false};......
}SQL tranformation phase
SELECT_LEX::apply_local_transforms
--> prune_partitions
​
for example, select * from employee where company_id = 1000 ;
​
SQL optimizer phase
JOIN::prune_table_partitions
--> prune_partitions 
------>  based on tbl->join_cond_optim() or JOIN::where_cond
​
for example, explain select * from employee where company_id = (select c1 from t1);
  • 举例下面RANGE剪枝的过程:
root:ref> CREATE TABLE R2  (->     a INT,->     d INT-> ) PARTITION BY RANGE(a) (->         PARTITION p20 VALUES LESS THAN (20),->         PARTITION p40 VALUES LESS THAN (40),->         PARTITION p60 VALUES LESS THAN (60),->         PARTITION p80 VALUES LESS THAN (80),->         PARTITION p100 VALUES LESS THAN MAXVALUE-> );
Query OK, 0 rows affected (0.09 sec)
​
root:ref> Select * From R2 where a > 40 and a < 80;
  • 剪枝详细过程如下:
  • 由于剪枝需要根据不同条件产生的pruning结果进行交集,因此剪枝过程中需要使用read_partitions这样的bitmap来保存是否使用该对应分区。另外剪枝过程类似迭代判断,因此引入了part_iterator来保存开始、结束和当前,以及对应需要获取区间范围的endpoint函数和获取下一个值next的迭代器函数。这里巧妙的运用了指针,来兼容不同分区类型Hash/Range/List类型,如下图所示:

640-7.png

640-1.jpg

  • 获取join_cond或者m_where_cond的SEL_TREE红黑树(get_mm_tree)
  • 调用find_used_partitions来获取满足的分区,对于SEL_TREE的每个区间(interval):1. 获取区间的左右端点 2.从左边继续获取下一个满足的分区,直到到右边端点结束,每次调用完满足条件的分区需要使用bitmap_set_bit设置该分区在part_info->read_partitions上的位点。
  • find_used_partitions是根据SEL_TREE的结构进行递归,如图从左到右遍历next_key_part(and condition),然后再遍历SEL_TREE的左右(也就是上下方向,or condition)深度递归。
   (start)|                           $|   Partitioning keyparts   $  subpartitioning keyparts|                           $|     ...          ...      $|      |            |       $| +---------+  +---------+  $  +-----------+  +-----------+\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|+---------+  +---------+  $  +-----------+  +-----------+|                    $        |             ||                    $        |        +-----------+|                    $        |        | subpar2=c6||                    $        |        +-----------+|                    $        ||                    $  +-----------+  +-----------+|                    $  | subpar1=c4|--| subpar2=c8||                    $  +-----------+  +-----------+|                    $|                    $+---------+               $  +------------+  +------------+| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|+---------+               $  +------------+  +------------+|                    $...                   $
​
例如第一行(par1=c1 and par2=c2 and subpar1=c3 and subpar2=c5)的遍历的stack将是:
in find_used_partitions(key_tree = "subpar2=c5") (***)
in find_used_partitions(key_tree = "subpar1=c3")
in find_used_partitions(key_tree = "par2=c2")   (**)
in find_used_partitions(key_tree = "par1=c1")
in prune_partitions(...)
然后是继续下面的条件,以此类推
or(par1=c1 and par2=c2 and subpar1=c3 and subpar2=c6)
or(par1=c1 and par2=c2 and subpar1=c4 and subpar2=c8)
or(par1=c2 and subpar1=c10 and subpar2=c12)
  • 下图来展示了pruning的结构和过程:

640-8.png

5  下推条件到Derived Table(push_conditions_to_derived_tables)

该函数将条件下推到derived tables,详细见WL#8084 - Condition pushdown to materialized derived table。

root:test> set optimizer_switch = 'derived_merge=off'; // 关闭dervied_merge 测试下推能力
Query OK, 0 rows affected (0.00 sec)
​
root:test> EXPLAIN FORMAT=tree SELECT * FROM (SELECT c1,c2 FROM t1) as dt     WHERE c1 > 10;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN                                                                                                                                                                                             |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Table scan on dt  (cost=2.51..2.51 rows=1)-> Materialize  (cost=2.96..2.96 rows=1)-> Filter: (t1.c1 > 10)  (cost=0.35 rows=1)-> Table scan on t1  (cost=0.35 rows=1)|
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

过程如下:

  • 遍历derived table列表,判断是否可以下推(can_push_condition_to_derived),如果包括下面的情况则不能下推:
  • Derived table有UNION
  • Derived table有LIMIT
  • Derived table不能是outer join中的内表,会导致更多NULL补偿的行
  • 不能是CTE包含的Derived table
  • 创建可以下推到的Derived table的where cond(Condition_pushdown::make_cond_for_derived)
  • 保留剩余不能下推的条件(Condition_pushdown::get_remainder_cond)
  • Top-down递归调用push_conditions_to_derived_tables

详细图解该过程如下:

640-9.png

三  综述

两篇文章重点介绍了下优化器的基于规则的优化部分,并没有涉及更多的基于代价的优化,可以看到对于直接运用规则优化带来执行的加速,那么可以直接转换,尤其是对于查询结构上面的变化类转换,如merge_derived。对于运用规则优化无法判断是否带来执行的加速,那么优化器会保留一些临时结构,为后续的代价估算提供更多选择,如IN/EXIST/Materialized转换。当然还有一些,又改变查询结构又无法判定是否规则转换带来的执行加速,MySQL目前还不支持。文章虽然详尽,但无法覆盖全部情况,也是为了抛砖引玉,还需要读者自己通过调试的方法更进一步了解某一类SQL的具体过程。

四  参考资料

《MySQL 8.0 Server层最新架构详解》

《WL#13520: Transform correlated scalar subqueries》

《WL#8084 - Condition pushdown to materialized derived table》

《WL#2980: Subquery optimization: Semijoin》

  • WL#3740: Subquery optimization: Semijoin: Pull-out of inner tables
  • WL#3741: Subquery optimization: Semijoin: Duplicate elimination strategy
  • WL#3750: Subquery optimization: Semijoin: First-match strategy
  • WL#3751: Subquery optimization: Semijoin: Inside-out strategy

《WL#4389: Subquery optimizations: Make IN optimizations also handle EXISTS》

《WL#4245: Subquery optimization: Transform NOT EXISTS and NOT IN to anti-join》

《WL#2985: Perform Partition Pruning of Range conditions》
《MySQL · 源码分析 · Semi-join优化执行代码分析》
《MySQL·源码分析·子查询优化源码分析》《Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions》

原文链接
本文为阿里云原创内容,未经允许不得转载。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/512211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 底层知识:什么是 “桥接方法” ?

作者 | 小志来源 | 程序员小灰导语笔者在最近的日常工作中&#xff0c;因业务需要&#xff0c;研究 Java 字节码层面的知识。具体是&#xff0c;需要根据类字节码&#xff0c;获取特定方法名的方法入参&#xff0c;此方法名在源码中只有一个。但是在实际使用中发现&#xff1a;…

ACMMM2021|在多模态训练中融入“知识+图谱”:方法及电商应用实践

简介&#xff1a; 随着人工智能技术的不断发展&#xff0c;知识图谱作为人工智能领域的知识支柱&#xff0c;以其强大的知识表示和推理能力受到学术界和产业界的广泛关注。近年来&#xff0c;知识图谱在语义搜索、问答、知识管理等领域得到了广泛的应用。 作者 | 朱渝珊 来源 |…

带你体验云原生场景下 Serverless 应用编程模型

简介&#xff1a; 阿里云 Knative 基于 ASK 之上&#xff0c;在完全兼容社区 Knaitve 的同时对 FC、ECI 工作负载进行统一应用编排&#xff0c;支持事件驱动、自动弹性&#xff0c;为您提供统一的 Serverless 应用编程模型。 背景 阿里云 Serverless Kubernetes&#xff08;A…

CSO全球网络安全大会来了,权威奖项征集中

全球网络安全顶级峰会——IDC 2022 全球CSO网络安全大会&#xff08;以下简称大会&#xff09;将于2022年6月首次落地中国。本届大会以“聚力数据安全 赋能企业现代化”为主题&#xff0c;由Foundry&#xff08;IDG&#xff09;/IDC联合上海市信息安全行业协会共同举办&#xf…

stream of java_Java 8 新特性-Stream更优雅的处理集合入门

Java 8 新特性之——Stream一. 简单介绍Stream是Java 8提出了的一种新的对集合对象功能的增强。它集合Lambda表达式&#xff0c;对集合提供了一些非常便利&#xff0c;高效的操作&#xff0c;使得代码具有非常高的可读性&#xff0c;优雅性&#xff01;&#xff01;举个例子来说…

MySQL深潜|剖析Performance Schema内存管理

简介&#xff1a; 本文主要是通过对PFS引擎的内存管理源码的阅读&#xff0c;解读PFS内存分配及释放原理&#xff0c;深入剖析其中存在的一些问题&#xff0c;以及一些改进思路。 一 引言 MySQL Performance schema(PFS)是MySQL提供的强大的性能监控诊断工具&#xff0c;提供…

敲地鼠java_Java实现的打地鼠小游戏完整示例【附源码下载】

本文实例讲述了Java实现的打地鼠小游戏。分享给大家供大家参考&#xff0c;具体如下&#xff1a;这里涉及到java线程和GUI的相关知识&#xff0c;一个简单的java小游戏打地鼠&#xff0c;有兴趣的朋友可以优化一下。先来看看运行效果&#xff1a;具体代码&#xff1a;Mouse.jav…

深入理解 Docker 网络原理

作者 | 渡、来源 | CSDN博客Docker网络原理容器是相对独立的环境&#xff0c;相当于一个小型的Linux系统&#xff0c;外界无法直接访问&#xff0c;那他是怎么做的呢&#xff0c;这里我们先了解下Linux veth pair。1. Linux veth pairveth pair是成对出现的一种虚拟网络设备接口…

全网首发|阿里资深技术专家数仓调优经验分享(上)

简介&#xff1a; 本篇文章总结了AnalyticDB表的设计的最佳经验、数据写入的最佳经验、高效查询的最佳实践&#xff0c;以及一些常见的问题。 随着云原生数据仓库AnalyticDB for MySQL&#xff08;下文统一简称&#xff1a;AnalyticDB&#xff09;在阿里集团各个业务线、社会上…

重大技术突破首次发布!十问解密云栖大会!

简介&#xff1a; 2021年10月19日&#xff0c;杭州&#xff0c;云栖大会正式开幕。大会上&#xff0c;阿里巴巴正式发布自研云芯片倚天710&#xff0c;这是阿里云推进“一云多芯”策略的重要一步&#xff0c;也是阿里第一颗为云而生的CPU芯片&#xff0c;将在阿里云数据中心部署…

Redis 缓存击穿(失效)、缓存穿透、缓存雪崩怎么解决?

作者 | 码哥来源 | 码哥字节原始数据存储在 DB 中&#xff08;如 MySQL、Hbase 等&#xff09;&#xff0c;但 DB 的读写性能低、延迟高。比如 MySQL 在 4 核 8G 上的 TPS 5000&#xff0c;QPS 10000 左右&#xff0c;读写平均耗时 10~100 ms。用 Redis 作为缓存系统正好可以…

在 Kubernetes 集群中使用 MetalLB 作为 Load Balancer(上)

作者 | Addo Zhang来源 | 云原生指北TL&#xff1b;DR网络方面的知识又多又杂&#xff0c;很多又是系统内核的部分。原本自己不是做网络方面的&#xff0c;系统内核知识也薄弱。但恰恰是这些陌生的内容满满的诱惑&#xff0c;加上现在的工作跟网络关联更多了&#xff0c;逮住机…

Java程序员情人节_盘点程序员情人节的表白,前端程序员最浪漫,后端不服来战...

今天是 2 月 14 日情人节&#xff0c;我看公众号后台有好多人在回复关键字&#xff1a;情人节表白代码。我想&#xff0c;我作为大家的校长&#xff0c;必须给大家送一波福利代码啊!我是真没想到&#xff0c;竟然很多程序员都想用代码表白&#xff0c;还整的挺浪漫的&#xff0…

GRPC: 如何实现分布式日志跟踪?

简介&#xff1a; 本文将介绍如何在 gRPC 分布式场景中&#xff0c;实现 API 的日志跟踪。 介绍 本文将介绍如何在 gRPC 分布式场景中&#xff0c;实现 API 的日志追踪。 什么是 API 日志追踪&#xff1f; 一个 API 请求会跨多个微服务&#xff0c;我们希望通过一个唯一的 ID…

一文搞懂物联网Modbus通讯协议

简介&#xff1a; 一般来说&#xff0c;常见的物联网通讯协议众多&#xff0c;如蓝牙、Zigbee、WiFi、ModBus、PROFINET、EtherCAT、蜂窝等。而在众多的物联网通讯协议中&#xff0c;Modbus是当前非常流行的一种通讯协议。它一种串行通信协议&#xff0c;是Modicon公司于1979年…

快看世界技术VP安尝思:从漫画到视频,如何用技术赋能创作

供稿 | 快看世界 2月25日&#xff0c;在火山引擎举办的视频云科技原力峰会上&#xff0c;快看世界技术VP安尝思受邀参加&#xff0c;并发表主题为《如何搭建轻量高效的视频技术体系》的演讲。 安尝思表示&#xff0c;快看视频内容的革命性变化来自于漫剧的推出&#xff0c;在过…

2021云栖大会丨阿里云发布第四代神龙架构,提供业界首个大规模弹性RDMA加速能力

简介&#xff1a; 10月20日&#xff0c;2021年杭州栖大云会上&#xff0c;阿里云发布第四代神龙架构&#xff0c;升级至全新的eRMDA网络架构&#xff0c;是业界首个大规模弹性RDMA加速能力。 10月20日&#xff0c;2021年杭州栖大云会上&#xff0c;阿里云发布第四代神龙架构。…

Rambus推出面向下一代数据中心的PCIe 6.0控制器

新闻摘要&#xff1a; 将先进的人工智能/机器学习、存储和网络应用的性能提升至64 GT/s优化了功耗、面积和延迟&#xff0c;全方位实现PCIe 6.0特性集成IDE引擎提供最先进的数据安全Rambus PCIe 6.0控制器框图 作为业界领先的芯片和IP核供应商&#xff0c;致力于使数据传输更…

阿里云混合云Apsara Stack 2.0发布 加速政企数智创新

简介&#xff1a; 2021年10月21日&#xff0c;杭州 – 今日&#xff0c;阿里云于云栖大会正式发布Apsara Stack 2.0&#xff0c;从面向单一私有云场景&#xff0c;升级为服务大型集团云&行业云场景。新一代Apsara Stack不仅可以为政企定制稳定、安全、开放、智能的数字底座…

ArrayList源码浅析

简介&#xff1a; ArrayList作为我们开发中最常用的集合&#xff0c;作为极高频次使用的类&#xff0c;我们不妨阅读源码一谈究竟。 前言 ArrayList作为我们开发中最常用的集合&#xff0c;作为极高频次使用的类&#xff0c;我们不妨阅读源码一谈究竟。 介绍 ArrayList继承…