多任务学习模型之ESMM介绍与实现

简介:本文介绍的是阿里巴巴团队发表在 SIGIR’2018 的论文《Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate》。文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。后续还会陆续介绍MMoE,PLE,DBMTL等多任务学习模型。

多任务学习背景

目前工业中使用的推荐算法已不只局限在单目标(ctr)任务上,还需要关注后续的转换链路,如是否评论、收藏、加购、购买、观看时长等目标。

本文介绍的是阿里巴巴团队发表在 SIGIR’2018 的论文《Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate》。文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。后续还会陆续介绍MMoE,PLE,DBMTL等多任务学习模型。

论文介绍

CVR预估面临两个关键问题:

1. Sample Selection Bias (SSB)

转化是在点击之后才“有可能”发生的动作,传统CVR模型通常以点击数据为训练集,其中点击未转化为负例,点击并转化为正例。但是训练好的模型实际使用时,则是对整个空间的样本进行预估,而非只对点击样本进行预估。即训练数据与实际要预测的数据来自不同分布,这个偏差对模型的泛化能力构成了很大挑战,导致模型上线后,线上业务效果往往一般。

2. Data Sparsity (DS)

CVR预估任务的使用的训练数据(即点击样本)远小于CTR预估训练使用的曝光样本。仅使用数量较小的样本进行训练,会导致深度模型拟合困难。

一些策略可以缓解这两个问题,例如从曝光集中对unclicked样本抽样做负例缓解SSB,对转化样本过采样缓解DS等。但无论哪种方法,都没有从实质上解决上面任一个问题。

由于点击=>转化,本身是两个强相关的连续行为,作者希望在模型结构中显示考虑这种“行为链关系”,从而可以在整个空间上进行训练及预测。这涉及到CTR与CVR两个任务,因此使用多任务学习(MTL)是一个自然的选择,论文的关键亮点正在于“如何搭建”这个MTL。

首先需要重点区分下,CVR预估任务与CTCVR预估任务。

  • CVR = 转化数/点击数。是预测“假设item被点击,那么它被转化”的概率。CVR预估任务,与CTR没有绝对的关系。一个item的ctr高,cvr不一定同样会高,如标题党文章的浏览时长往往较低。这也是不能直接使用全部样本训练CVR模型的原因,因为无法确定那些曝光未点击的样本,假设他们被点击了,是否会被转化。如果直接使用0作为它们的label,会很大程度上误导CVR模型的学习。
  • CTCVR = 转换数/曝光数。是预测“item被点击,然后被转化”的概率。

其中x,y,z分别表示曝光,点击,转换。注意到,在全部样本空间中,CTR对应的label为click,而CTCVR对应的label为click & conversion,这两个任务是可以使用全部样本的。因此,ESMM通过学习CTR,CTCVR两个任务,再根据上式隐式地学习CVR任务。具体结构如下:

网络结构上有两点值得强调:

  1. 共享Embedding。 CVR-task和CTR-task使用相同的特征和特征embedding,即两者从Concatenate之后才学习各自独享的参数;
  2. 隐式学习pCVR。这里pCVR 仅是网络中的一个variable,没有显示的监督信号。

具体地,反映在目标函数中:

代码实现

基于EasyRec推荐算法框架,我们实现了ESMM算法,具体实现可移步至github:EasyRec-ESMM。

EasyRec介绍:EasyRec是阿里云计算平台机器学习PAI团队开源的大规模分布式推荐算法框架,EasyRec 正如其名字一样,简单易用,集成了诸多优秀前沿的推荐系统论文思想,并且有在实际工业落地中取得优良效果的特征工程方法,集成训练、评估、部署,与阿里云产品无缝衔接,可以借助 EasyRec 在短时间内搭建起一套前沿的推荐系统。作为阿里云的拳头产品,现已稳定服务于数百个企业客户。

模型前馈网络:

  def build_predict_graph(self):"""Forward function.Returns:self._prediction_dict: Prediction result of two tasks."""# 此处从Concatenate后的tensor(all_fea)开始,省略其生成逻辑cvr_tower_name = self._cvr_tower_cfg.tower_namednn_model = dnn.DNN(self._cvr_tower_cfg.dnn,self._l2_reg,name=cvr_tower_name,is_training=self._is_training)cvr_tower_output = dnn_model(all_fea)cvr_tower_output = tf.layers.dense(inputs=cvr_tower_output,units=1,kernel_regularizer=self._l2_reg,name='%s/dnn_output' % cvr_tower_name)ctr_tower_name = self._ctr_tower_cfg.tower_namednn_model = dnn.DNN(self._ctr_tower_cfg.dnn,self._l2_reg,name=ctr_tower_name,is_training=self._is_training)ctr_tower_output = dnn_model(all_fea)ctr_tower_output = tf.layers.dense(inputs=ctr_tower_output,units=1,kernel_regularizer=self._l2_reg,name='%s/dnn_output' % ctr_tower_name)tower_outputs = {cvr_tower_name: cvr_tower_output,ctr_tower_name: ctr_tower_output}self._add_to_prediction_dict(tower_outputs)return self._prediction_dict

loss计算:

注意:计算CVR的指标时需要mask掉曝光数据。

  def build_loss_graph(self):"""Build loss graph.Returns:self._loss_dict: Weighted loss of ctr and cvr."""cvr_tower_name = self._cvr_tower_cfg.tower_namectr_tower_name = self._ctr_tower_cfg.tower_namecvr_label_name = self._label_name_dict[cvr_tower_name]ctr_label_name = self._label_name_dict[ctr_tower_name]ctcvr_label = tf.cast(self._labels[cvr_label_name] * self._labels[ctr_label_name], tf.float32)cvr_loss = tf.keras.backend.binary_crossentropy(ctcvr_label, self._prediction_dict['probs_ctcvr'])cvr_loss = tf.reduce_sum(cvr_losses, name="ctcvr_loss")# The weight defaults to 1.self._loss_dict['weighted_cross_entropy_loss_%s' %cvr_tower_name] = self._cvr_tower_cfg.weight * cvr_lossctr_loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.cast(self._labels[ctr_label_name], tf.float32),logits=self._prediction_dict['logits_%s' % ctr_tower_name]), name="ctr_loss")self._loss_dict['weighted_cross_entropy_loss_%s' %ctr_tower_name] = self._ctr_tower_cfg.weight * ctr_lossreturn self._loss_dict

note: 这里loss是 weighted_cross_entropy_loss_ctr + weighted_cross_entropy_loss_cvr, EasyRec框架会自动对self._loss_dict中的内容进行加和。

metric计算:

注意:计算CVR的指标时需要mask掉曝光数据。

  def build_metric_graph(self, eval_config):"""Build metric graph.Args:eval_config: Evaluation configuration.Returns:metric_dict: Calculate AUC of ctr, cvr and ctrvr."""metric_dict = {}cvr_tower_name = self._cvr_tower_cfg.tower_namectr_tower_name = self._ctr_tower_cfg.tower_namecvr_label_name = self._label_name_dict[cvr_tower_name]ctr_label_name = self._label_name_dict[ctr_tower_name]for metric in self._cvr_tower_cfg.metrics_set:# CTCVR metricctcvr_label_name = cvr_label_name + '_ctcvr'cvr_dtype = self._labels[cvr_label_name].dtypeself._labels[ctcvr_label_name] = self._labels[cvr_label_name] * tf.cast(self._labels[ctr_label_name], cvr_dtype)metric_dict.update(self._build_metric_impl(metric,loss_type=self._cvr_tower_cfg.loss_type,label_name=ctcvr_label_name,num_class=self._cvr_tower_cfg.num_class,suffix='_ctcvr'))# CVR metriccvr_label_masked_name = cvr_label_name + '_masked'ctr_mask = self._labels[ctr_label_name] > 0self._labels[cvr_label_masked_name] = tf.boolean_mask(self._labels[cvr_label_name], ctr_mask)pred_prefix = 'probs' if self._cvr_tower_cfg.loss_type == LossType.CLASSIFICATION else 'y'pred_name = '%s_%s' % (pred_prefix, cvr_tower_name)self._prediction_dict[pred_name + '_masked'] = tf.boolean_mask(self._prediction_dict[pred_name], ctr_mask)metric_dict.update(self._build_metric_impl(metric,loss_type=self._cvr_tower_cfg.loss_type,label_name=cvr_label_masked_name,num_class=self._cvr_tower_cfg.num_class,suffix='_%s_masked' % cvr_tower_name))for metric in self._ctr_tower_cfg.metrics_set:# CTR metricmetric_dict.update(self._build_metric_impl(metric,loss_type=self._ctr_tower_cfg.loss_type,label_name=ctr_label_name,num_class=self._ctr_tower_cfg.num_class,suffix='_%s' % ctr_tower_name))return metric_dict

实验及不足

我们基于开源AliCCP数据,进行了大量实验,实验部分请期待下一篇文章。实验发现,ESMM的跷跷板现象较为明显,CTR与CVR任务的效果较难同时提升。

参考文献

  1. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate
  2. 阿里CVR预估模型之ESMM
  3. EasyRec-ESMM使用介绍多任务学习模型之ESMM介绍与实现

原文链接

本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/511703.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java pinyin4j 首字母_通讯录之按汉字首字母排序 --java--pinyin4J

最近开发手机端OA系统通讯录时遇到了用汉字首字母排序的问题,各种谷歌后发现了一个轮子pinyin4J,这个轮子是可以将汉字转换成字母拼音,个人觉得很好用,完美的解决了排序的问题,分享一下。一.工具介绍pinyin4j是一个支持…

助力开源生态繁荣,统信软件建设中国桌面操作系统根社区

继 React、SUSE、RedHat 宣布对俄罗斯停服后,近日 Ubuntu 开发商 Canonical 在俄乌冲突下也宣布对俄罗斯企业停止支持和专业服务。 这给我们敲醒了警钟:因为Ubuntu 事件瞄准桌面操作系统,桌面操作系统用户庞大,其安全性属于系统级…

一文详解 | 开放搜索兼容Elasticsearch做召回引擎

简介:开放搜索发布开源兼容版,支持阿里云Elasticsearch做搜索召回引擎,本文详细介绍阿里云ES用户如何通过接入开放搜索兼容版丰富行业分词库,提升查询语义理解能力,无需开发、算法投入,即可获得淘系同款搜索…

人人都是 Serverless 架构师 | 现代化 Web 应用开发实战

简介:本篇实战将介绍如何以超低成本构建动态的 Web 站点,并且实现灵活扩展,限流等效果,最后再跟大家聊一聊“现代应用”的相关概念。 相信很多同学都有过想要拥有自己的 Web 站点的想法,但是如果想要搭建动态的站点&a…

Gartner:如何在中国成功应用多云模式

作者 | Gartner研究总监 杜勇 供稿 | Gartner 当前,中国政府鼓励行业企业通过云计算技术来实施数字化转型,从而加速经济增长。许多企业机构已部署了私有云和单一供应商混合云,以实现这一目标。为了满足全球业务和本地业务需要分别部署在不同的…

java socket 线程池_程序员:java使用线程池和TCP实现简单多轮聊天系统

最近在做物联网项目,需要使用TCP和传感器进行双向交互,通过这种渠道,找到了下面的代码,写成博客主要也是为了记录一下,以后用到随时可以看。代码实现服务端package com.tcp;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.…

阿里云李飞飞:中国数据库的时与势

简介:数据库、操作系统和中间件并列为三大基础软件,无论是在银行存取款,还是进行健康码查询,我们的日常应用和企业业务背后都离不开数据库。可以说,没有数据库,就难以构建数字化底座。过去的40多年&#xf…

阿里巴巴超大规模 Kubernetes 基础设施运维体系介绍

简介:ASI 作为阿里集团、阿里云基础设施底座,为越来越多的云产品提供更多专业服务,托管底层 K8s 集群,屏蔽复杂的 K8s 门槛、透明几乎所有的基础设施复杂度,并用专业的产品技术能力兜底稳定性,让云产品只需…

数据库资深“学霸”再启程,专访数据库初创公司矩阵起源全球 CTO 田丰博士

师出名门,工业界履历从大厂首席工程师到创业公司 CTO,并能一直从事底层系统的核心研发工作,可能是很多优秀技术人向往的光鲜履历。不过抛弃大厂的光鲜稳定工作和成功的创业项目,再次加入初创公司,则需要比常人更大的魄…

Spring官方RSocket Broker 0.3.0发布: 快速构建你的RSocket架构

简介:Spring官方的RSocket Broker其实开发已经非常久了,我以为会伴随着Spring Cloud 2021.0发布的,但是没有发生。不过Spring RSocket Broker还是发布了最新的0.3版本,虽然还是预览版,但目前已经可用,考虑官…

Redis 6 中的多线程是如何实现的!?

作者 | 张彦飞allen来源 | 开发内功修炼Redis 是一个高性能服务端的典范。它通过多路复用 epoll 来管理海量的用户连接,只使用一个线程来通过事件循环来处理所有用户请求,就可以达到每秒数万 QPS 的处理能力。下图是单线程版本 Redis 工作的核心原理图单…

如何构建流量无损的在线应用架构 | 专题开篇

简介:本篇是整个《如何构建流量无损的在线应用架构》系列的第一篇,这一系列共三篇,旨在使用最为朴素的语言将影响在线应用流量稳定性的技术问题做一个归类,这些问题的解决方案有的只是一些代码层面的细节,有的需要工具…

云原生时代的运维体系进化

简介:基于容器、Kubernetes 等云原生技术,提供的开放社区标准、不可变基础设施、声明式 API 会成为企业 CloudOps 的最佳实践,也将在这个基础上推进数据化、智能化体系建设,将运维复杂性进一步下沉,让企业可以聚焦于自…

企业如何从 0 到 1 构建整套全链路追踪体系

简介:本文将分享 ARMS 在全链路追踪领域的最佳实践,分享主要分为四部分。首先,是对分布式链路追踪的整体简介。其次,是对 ARMS 在分布式链路追踪领域的核心能力进行介绍。然后,介绍如何从 0 到 1 构建整套全链路追踪体…

React18 的 useEffect 新特性为什么被疯狂吐槽?

作者 | 零一来源 | 前端印象react18 已经出来一段时间了,create-react-app 默认安装的 React 版本也已经是 18,不知道有没有小伙伴发现自己有点看不懂 React 了?import { useEffect, useState } from reactfunction App () {const [data, set…

如何构建一个流量无损的在线应用架构 | 专题中篇

简介:本篇是整个《如何流量无损的在线应用架构》系列的第二篇,这一系列共三篇,旨在使用最为朴素的语言将影响在线应用流量稳定性的技术问题做一个归类,这些问题的解决方案有的只是一些代码层面的细节,有的需要工具进行…

一文读懂蓝绿发布、A/B 测试和金丝雀发布的优缺点

简介:目前,业界已经总结出了几种常见的服务发布策略来解决版本升级过程中带来的流量有损问题。本文首先会对这些普遍的发布策略进行简单的原理解析,最后结合阿里云的云原生网关对这些发布策略进行实践。 作者 | 扬少 背景 目前&#xff0c…

Kafka 到底有多高可靠?

作者 | 敖丙来源 | 敖丙什么叫可靠性?大家都知道,系统架构有三高:「高性能、高并发和高可用」,三者的重要性不言而喻。对于任意系统,想要同时满足三高都是一件非常困难的事情,大型业务系统或者传统中间件都…

阿里云张振尧:阿里云边缘云驱动5G时代行业新价值

简介:近日,以“5G融合通信趋势下的技术创新”为主题的2021中国增值电信及虚拟运营高峰论坛在北京召开,阿里云边缘云高级产品专家张振尧发表了《阿里云边缘云驱动5G时代行业新价值》主题演讲,分享了阿里云边缘云作为5G时代的新基础…

美的工业技术亮相2022汉诺威工业博览会,助力全球工业向数字化与可持续迈进

2022年5月31日,2022汉诺威工业博览会开幕并重启线下展览,美的工业技术以“科技驱动,拥抱高效、绿色、智能的工业未来”为主题,携旗下工业自动化品牌“高创”、 “合康新能”和“东菱”,以覆盖自动化、绿色能源领域的领…