解决微服务架构下流量有损问题的实践和探索

简介:绝⼤多数的软件应⽤⽣产安全事故发⽣在应⽤上下线发布阶段,尽管通过遵守业界约定俗成的可灰度、可观测和可滚回的安全⽣产三板斧,可以最⼤限度的规避发布过程中由于应⽤⾃身代码问题对⽤户造成的影响。但对于⾼并发⼤流量情况下的短时间流量有损问题却仍然⽆法解决。因此,本文将围绕发布过程中如何解决流量有损问题实现应⽤发布过程中的⽆损上下线效果相关内容展开⽅案介绍。

作者 | 铖朴
来源 | 阿里开发者公众号

绝⼤多数的软件应⽤⽣产安全事故发⽣在应⽤上下线发布阶段,尽管通过遵守业界约定俗成的可灰度、可观测和可滚回的安全⽣产三板斧,可以最⼤限度的规避发布过程中由于应⽤⾃身代码问题对⽤户造成的影响。但对于⾼并发⼤流量情况下的短时间流量有损问题却仍然⽆法解决。因此,本文将围绕发布过程中如何解决流量有损问题实现应⽤发布过程中的⽆损上下线效果相关内容展开⽅案介绍。

无损上下线背景

据统计,应⽤的事故⼤多发⽣在应⽤上下线过程中,有时是应⽤本身代码问题导致。但有时我们也会发现尽管代码本身没有问题,但在应⽤上下线发布过程中仍然会出现短时间的服务调⽤报错,⽐如调⽤时出现Connection refused和No instance等现象。相关问题的原因有相关发布经历的同学或多或少可能有⼀定了解,⽽且⼤家发现该类问题⼀般在流量⾼峰时刻尤为明显,半夜流量少的时候就⽐较少见,于是很多⼈便选择半夜三更进⾏应⽤发布希望以此来规避线上发布事故。本节将就这些问题出现的背后真实原因以及业界对应的设计⽅案展开介绍。常见的流量有损现象出现的原因包括但不限于以下⼏种:

  • 服务⽆法及时下线:服务消费者感知注册中⼼服务列表存在延时,导致应⽤特定实例下线后在⼀段时间内服务消费者仍然调⽤已下线实例造成请求报错。
  • 初始化慢:应⽤刚启动接收线上流量进⾏资源初始化加载,由于流量太⼤,初始化过程慢,出现⼤量请求响应超时、阻塞、资源耗尽从⽽造成刚启动应⽤宕机。
  • 注册太早:服务存在异步资源加载问题,当服务还未初始化完全就被注册到注册中⼼,导致调⽤时资源未加载完毕出现请求响应慢、调⽤超时报错等现象。
  • 发布态与运⾏态未对⻬:使⽤Kubernetes的滚动发布功能进⾏应⽤发布,由于Kubernetes的滚动发布⼀般关联的就绪检查机制,是通过检查应⽤特定端⼝是否启动作为应⽤就绪的标志来触发下⼀批次的实例发布,但在微服务应⽤中只有当应⽤完成了服务注册才可对外提供服务调⽤。因此某些情况下会出现新应⽤还未注册到注册中⼼,⽼应⽤实例就被下线,导致⽆服务可⽤。

接下来,将就具体的下线和上线过程中如何避免流量损耗问题进⾏分别介绍。

无损下线

由于微服务应用自身调用特点,在高并发下,服务提供端应用实例的直接下线,会导致服务消费端应用实例无法实时感知下游实例的实时状态因而出现继续将请求转发到已下线的实例从而出现请求报错,流量有损。

图1 Spring Cloud应⽤消费者⽆法及时感知提供者服务下线

例如对于Spring Cloud应⽤如上图1所示,当应⽤的两个实例A’和A中的A下线时,由于
Spring Cloud框架为了在可⽤性和性能⽅⾯做平衡,消费者默认是30s去注册中⼼拉取最新的服务列表,因此A实例的下线不能被实时感知,流量较⼤时,消费者会继续通过本地缓存调⽤已下线的A实例导致出现流量有损。基于上述背景,业界提出了相应的⽆损下线(也叫优雅下线)的技术⽅案来应对上述问题。本节将对业界主流的⼀些⽆损下线技术⽅案进⾏介绍。

针对该类问题,业界一般的解决方式是通过将应用更新流程划分为手工摘流量、停应用、更新重启三个步骤。由人工操作实现客户端避免调用已下线实例,这种方式简单而有效,但是限制较多:不仅需要借助流控能力来实现实时摘流量,还需要在停应用前人工判断来保证在途请求已经处理完毕。这种需要人工介入的方式运维复杂度较高,只适用于规模较小的应用,无法解决当前云原生架构下,自动化的弹性伸缩、滚动升级等场景中的实例下线过程中的流量有损问题。本节将对业界应用于云原生场景中的一些无损下线技术方案进行介绍。

1 主动通知

一般注册中心都提供了主动注销接口供微服务应用正常关闭时调用,以便下线实例能及时更新其在注册中心上的状态。主动注销在部分基于事件感知注册中心服务列表的微服务框架比如Dubbo中能及时让上游服务消费者感知到提供者下线避免后续调用已下线实例。但对于像Spring Cloud这类微服务框架服务消费者感知注册中心实例变化是通过定时拉取服务列表的方式实现。尽管下线实例通过注册中心主动注销接口更新了其自身在注册中心上的应用状态信息但由于上游消费者需要在下一次拉取注册中心应用列表时才能感知到,因此会出现消费者感知注册中心实例变化存在延时。在流量较大、并发较高的场景中,当实例下线后,仍无法实现流量无损。既然无法通过注册中心让存量消费者实例实时感知下游服务提供者的变化情况,业界提出了利用主动通知解决该类问题。主动通知过程如下图2所示:

图2 ⽆损下线⽅案

如图2所示,服务提供者B中某个实例在下线时为避免主动在注册中心中注销的服务实例状态无法实时被上游消费者A感知到,从而导致调用已下线实例的问题。在接收到下线命令即将下线前,提供者B对于在等待下线阶段内收到的请求,在其返回值中都增加上特殊标记让服务消费者接收到返回值并识别到相关标志后主动拉取一次注册中心服务实例从而实时感知B实例最新状态,从而达到服务提供者的下线状态能够被服务消费者实时感知。

2 自适应等待

在并发度不⾼的场景下,主动通知⽅法可以解决绝⼤部分应⽤下线流量有损问题。但对于⾼并发⼤流量应⽤下线场景,如果主动通知完,可能仍然存在⼀些在途请求需要待下线应⽤处理完才能下线否则这些流量就⽆法正常被响应。为解决该类在途请求问题,可通过给待下线应⽤在下线前通过⾃适应等待机制在处理完所有在途请求后,再下线以实现流量⽆损。

图3 ⾃适应等待机制

如上图3所示,⾃适应等待机制是通过待下线应⽤统计应⽤中是否仍然存在未处理完的在途请求,来决定应⽤下线的时机,从⽽让待下线应⽤在下线前处理完所有剩余请求。

无损上线

延迟加载是软件框架设计过程中最常⻅的⼀种策略,例如在Spring Cloud框架中Ribbon组件的拉取服务列表初始化默认都是要等到服务的第⼀次调⽤时刻,例如下图4是Spring Cloud应⽤中第⼀次和第⼆次通过调⽤RestTemplate调⽤远程服务的耗时对比情况:

图4 应⽤启动资源初始化与正常运⾏过程中耗时情况对⽐

由图4结果可⻅,第⼀次调⽤由于进⾏了⼀些资源初始化,耗时是正常情况的数倍之多。因此把新应⽤发布到线上直接处理⼤流量极易出现⼤量请求响应慢,资源阻塞,应⽤实例宕机的现象。

业界针对上述应⽤⽆损上线场景提出如下包括延迟注册、⼩流量服务预热以及就绪检查等⼀系列解决⽅案,详细完整的⽅案如下图5所示:

图5 ⽆损上线整体⽅案

1 延迟注册

对于初始化过程需要异步加载资源的复杂应⽤启动过程,由于注册通常与应⽤初始化过程同步进⾏,从⽽出现应⽤还未完全初始化就已经被注册到注册中⼼供外部消费者调⽤,此时直接调⽤由于资源未加载完成可能会导致请求报错。通过设置延迟注册,可让应⽤在充分初始化后再注册到注册中⼼对外提供服务。例如开源微服务治理框架Dubbo原⽣就提供延迟注册功能[1]。

2 小流量服务预热

在线上发布场景下,很多时候刚启动的冷系统直接处理⼤量请求,可能由于系统内部资源初始化不彻底从⽽出现⼤量请求超时、阻塞、报错甚⾄导致刚发布应⽤宕机等线上发布事故出现。为了避免该类问题业界针对不同框架类型以及应⽤⾃身特点设计了不同的应对举措,⽐如针对类加载慢问题有编写脚本促使JVM进⾏预热、阿⾥巴巴集团内部HSF(High Speed Framework)使⽤的对接⼝分批发布、延迟注册、通过mock脚本对应⽤进⾏模拟请求预热以及⼩流量预热等。本节将对其中适⽤范围最⼴的⼩流量预热⽅法进⾏介绍。

相⽐于⼀般场景下,刚发布微服务应⽤实例跟其他正常实例⼀样⼀起平摊线上总QPS。⼩流量预热⽅法通过在服务消费端根据各个服务提供者实例的启动时间计算权重,结合负载均衡算法控制刚启动应⽤流量随启动时间逐渐递增到正常⽔平的这样⼀个过程帮助刚启动运⾏进⾏预热,详细QPS随时间变化曲线如图6所示:

图6 应⽤⼩流量预热过程QPS曲线

开源Dubbo所实现的⼩流量服务预热过程原理如下图7所示:

图7 应⽤⼩流量预热过程原理图

服务提供端在向注册中⼼注册服务的过程中,将⾃身的预热时⻓ WarmupTime、服务启动时间StartTime 通过元数据的形式注册到注册中⼼中,服务消费端在注册中⼼订阅相关服务实例列表,调⽤过程中根据 WarmupTime、StartTime 计算个实例所分批的调⽤权重。刚启动StartTime 距离调⽤时刻差值较⼩的实例权重下,从⽽实现对刚启动应⽤分配更少流量实现对其进⾏⼩流量预热。

开源Dubbo所实现的⼩流量服务预热模型计算如下公式所示:

模型中应用QPS对应的 f(x) 随调用时刻 x 线性变化,x表示调用时刻的时间,startTime是应用开始时间,warmupTime是用户配置的应用预热时长,k是常数,一般表示各实例的默认权重。

图8 应⽤⼩流量预热权重计算

通过⼩流量预热⽅法,可以有效解决,⾼并发⼤流量下,资源初始化慢所导致的⼤量请求响应 慢、请求阻塞,资源耗尽导致的刚启动应⽤宕机事故。

3 微服务就绪检查

在介绍微服务就绪检查之间,先简单介绍⼀下相关的Kubernetes探针技术作为技术背景,以便更好的理解后⽂内容:

Kubernetes探针技术

在云原⽣领域,Kubernetes为了确保应⽤ Pod 在对外提供服务之前应⽤已经完全启动就绪或者应⽤Pod⻓时间运⾏期间出现意外后能及时恢复,提供了探针技术来动态检测应⽤的运⾏情况,为保证应⽤的⽆损上线和⻓时间健康运⾏提供了保障。

存活探针

Kubernetes 中提供的存活探测器来探测什么时候进⾏容器重启。例如,存活探测器可以捕捉到死锁(应⽤程序在运⾏,但是⽆法继续执⾏后⾯的步骤)。在这样的情况下重启容器有助于让应⽤程序在有问题的情况下更可⽤。

就绪探针

Kubernetes 中提供的就绪探测器可以知道容器什么时候准备好了并可以开始接受请求流量,当⼀个 Pod 内的所有容器都准备好了,才能把这个 Pod 看作就绪了。这种信号的⼀个⽤途就是控制哪个 Pod 作为 Service 的后端。在Pod 还没有准备好的时候,会从 Service 的负载均衡器中被剔除的。

启动探针

Kubernetes 中提供的启动探测器可以知道应⽤程序容器什么时候启动了。如果配置了这类探测器,就可以控制容器在启动成功后再进⾏存活性和就绪检查,确保这些存活、就绪探测器不会影响应⽤程序的启动。这可以⽤于对慢启动容器进⾏存活性检测,避免它们在启动运⾏之前就被杀掉。

探针使用小结

1.当需要在容器已经启动后再执⾏存活探针或者就绪探针检查,则可通过设定启动探针实现。

2.当容器应⽤在遇到异常或不健康的情况下会⾃⾏崩溃,则不⼀定需要存活探针,Kubernetes 能根据 Pod 的 restartPolicy 策略⾃动执⾏预设的操作。

3.当容器在探测失败时被Kill并重新启动,则可通过指定⼀个存活探针,并指定restartPolicy 为Always 或 OnFailure。

4.当希望容器仅在探测成功时 Pod 才开始接收外部请求流量,则可使⽤就绪探针。

更多Kubernetes探针技术使用示例参考[2]。

当前容器+Kubernetes的应⽤运维部署⽅式已经成为了业界的事实标准,相关技术为微服务应⽤运维部署带来巨⼤便利的同时,在某些特殊的应⽤部署场景中也有⼀些问题需要解决。⽐如,使⽤Kubernetes的滚动发布功能进⾏应⽤发布,由于Kubernetes的滚动发布⼀般关联的就绪检查机制,是通过检查应⽤特定端⼝是否启动作为应⽤就绪的标志来触发下⼀批次的实例发布,但在微服务应⽤中只有当应⽤完成了服务注册才可对外提供服务调⽤。因此某些情况下会出现新应⽤还未注册到注册中⼼,⽼应⽤实例就被设置下线,导致⽆服务可⽤。

针对这样⼀类微服务应⽤的发布态与应⽤运⾏态⽆法对⻬的问题导致的应⽤上线事故,当前业界也已经有相关解决⽅案进⾏应对。⽐如可以通过就绪检查关联服务注册的⽅法,通过字节码技术植⼊应⽤服务注册逻辑前后,然后在应⽤中开启⼀个探测应⽤服务是否完成注册的端⼝供Kubernetes的就绪探针进⾏应⽤就绪态探测进⽽绑定⽤户的发布态与运⾏态实现微服务的就绪检查,避免出现相关状态不⼀致导致的应⽤发布上线流量有损问题。

参考资料

[1] Dubbo延迟注册:延迟暴露 | Apache Dubbo

[2]Kubernetes探针技术使⽤实例:
配置存活、就绪和启动探测器 | Kubernetes

原文链接

本文为阿里云原创内容,未经允许不得转载。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510879.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5月25日,阿里云开源 PolarDB-X 将迎来升级发布

简介:2022年5月25日,阿里云开源 PolarDB-X 将升级发布新版本!PolarDB-X 从 2009 年开始服务于阿里巴巴电商核心系统, 2015 年开始对外提供商业化服务,并于 2021 年正式开源。本次发布会将重磅推出在稳定性、生态融合以…

技术分享丨云企业网CEN2.技术揭晓

简介:随着企业数字化转型的加速,越来越多的企业选择了将业务部署在云上,这其中有超过20%的企业有全球组网的需求,这就使得云上网络的规模越来越大,复杂度也越来越高,为了应对这些变化,阿里云推出…

MAE 自监督算法介绍和基于 EasyCV 的复现

简介:自监督学习(Self-Supervised Learning)能利用大量无标注的数据进行表征学习,然后在特定下游任务上对参数进行微调。通过这样的方式,能够在较少有标注数据上取得优于有监督学习方法的精度。近年来,自监…

企业实践|分布式系统可观测性之应用业务指标监控

简介:本文主要讲述如何建立应用业务指标Metrics监控和如何实现精准告警。Metrics 可以翻译为度量或者指标,指的是对于一些关键信息以可聚合的、数值的形式做定期统计,并绘制出各种趋势图表。透过它,我们可以观察系统的状态与趋势。…

1024 程序员节城市嘉年华,共话技术生涯的一万种可能!

更硬核的技术峰会,更多元的主题论坛,更丰富的科技元素……更热血的 1024 程序员节闪亮登场!由湖南湘江新区管委会主办,长沙工业与信息化局、长沙信息产业园管委会与 CSDN 联合承办的第三届 2022 1024 程序员节将于 10 月 22 - 24 …

作业帮在线业务 Kubernetes Serverless 虚拟节点大规模应用实践

简介:目前方案已经成熟,高峰期已有近万核规模的核心链路在线业务运行在基于阿里云 ACKECI 的 Kubernetes Serverless 虚拟节点。随着业务的放量,未来运行在 Serverless 虚拟节点上的服务规模会进一步扩大,将节省大量的资源成本。 …

浅析微服务全链路灰度解决方案

简介:帮助应用发布版本过程中更精细化,提高了发布过程中的稳定性。服务转移⾄请求链路上进行流量控制,有效保证了多个亲密关系的服务顺利安全发布以及服务多版本并⾏开发,进⼀步促进业务的快速发展。 作者: 十眠&…

译:零信任对 Kubernetes 意味着什么

这篇是 Buoyant 的创始人 William Morgan 文章《# What Does Zero Trust Mean for Kubernetes?》[1]的翻译,文章很好的解释了什么是零信任、为什么要实施零信任,以及服务网格如何以最小的代码实现零信任。零信任是营销炒作,还是新的机会&…

Serverless 应用中心:Serverless 应用全生命周期管理平台

简介:Serverless 应用中心,是阿里云 Serverless 应用全生命周期管理平台。通过 Serverless 应用中心,用户在部署应用之前无需进行额外的克隆、构建、打包和发布操作,即可快速部署和管理应用。Serverless 应用中心帮助用户快速联动…

云钉一体:EventBridge 联合钉钉连接器打通云钉生态

简介:今天,EventBridge 联合钉钉连接器,打通了钉钉生态和阿里云生态,钉钉的生态伙伴可以通过通道的能力驱动阿里云上海量的计算力。 作者:尘央 背景 “以事件集成阿里云,从 EventBridge 开始”是 EventB…

开源当道,群英荟萃!1024 程序员节北京峰会火热来袭

1024 程序员节,致敬每一位二进制世界的主角。由开放原子开源基金会主办,北京经开区国家信创园、CSDN 承办的 2022 1024 程序员节北京峰会将于 10 月 24 日精彩来袭。以“软件新时代 开源创未来”为主题,聚焦开源新潮流,诚邀广大程…

超全,一图了解 2022 长沙 · 中国 1024 程序员节!

超全版来啦!2022 长沙 中国 1024 程序员节重磅大咖再聚,共话中国技术新生态你想了解的全在这里收藏!收藏!收藏!

1024 程序员节技术英雄会鸣锣开场,问道中国技术新生态

战鼓鸣,英雄至。10 月 24 日,2022 长沙中国 1024 程序员节重磅环节“技术英雄会”鸣锣开场!中国工程院院士、开源掌门人领衔,各领域专家、精英云集,围绕本届大会主题“算力新时代,开源创未来”,…

无尽创想!CSDN 1024 大赛重磅发布

在构建科技世界的过程中,1024 这个数字被赋予了特殊的意义,它代表着广大的程序员群体,更蕴藏着无穷的想象力与价值。在 1024 程序员节发展为程序员的盛会之后,1024 大赛应运而生,并作为 1024 程序员节全新的板块重磅发…

小镇青年程序员的逆袭人生:从差点回老家到荔枝技术骨干

编者按: 1024 是 2 的十次方,是二进制计数的基本计量单位之一。在计算机的发展史中,在和 0/1 所代表的二进制世界里,有人用代码编织出了形形色色的数字、程序、互联网,创造出一个个神话。 ——他们就是一群可爱、低调…

1024统信举办首届技术开放日,硬核技术引领操作系统“大迁移”

10月24日程序员节之际,统信软件首届技术开放日在国家信创园区圆满落下帷幕。统信软件首届技术开放日囊括UP主直播互动、打卡探园、“大迁移”主题论坛、全系产品体验等精彩环节。来自统信软件研发部门负责人、行业专家、技术大咖以及专业媒体代表百余人莅临活动现场…

FFA 议程上线!实时化浪潮下,Apache Flink 还将在大数据领域掀起怎样的变革?...

Flink Forward Asia 2022 将于 11 月 26-27 日在线上举办,议程内容正式上线!今年是 Flink Forward Asia(下文简称 FFA)落地中国的第五个年头,也是 Flink 成为 Apache 软件基金会顶级项目的第八年。过去这几年&#xff…

全面提升易用性:OpenClusterManagement 0.7 版本发布

简介:千呼万唤始出来,三月末 OpenClusterManagement 社区正式发布了 v0.7 版本。在新的版本有一系列新的功能特性欢迎感兴趣的读者体验探索,同时在这个版本中社区维护者对目前已有的功能也修复了一些问题并对面向最终用户的体验进行了打磨和提…

“晕乎乎的概念”:阿里云函数计算的“应用”又是个啥

简介:为什么阿里云函数计算发布了这么多功能,只有少数的功能会伴随着体验活动一起来做运营?那么这个“应用”到底是何方神圣?他和现在“服务”,“函数”有啥关系? 作者:刘宇 曾经,…

如何使用阿里云 CDN 对部署在函数计算上的静态网站进行缓存

简介:为了进一步提升网站的访问速度,我们会使用 CDN 对网站进行加速,但是最近在调试阿里云的函数计算和 CDN 的配合使用时发现了一个需要额外注意的地方。 作者:邓超 | Serverless Devs 开源贡献者 前言 为了进一步提升网站的访…