基于阿里云 Serverless 函数计算开发的疫情数据统计推送机器人

一、Serverless函数计算

什么是Serverless?

在《Serverless Architectures》中对 Serverless 是这样子定义的:

Serverless was first used to describe applications that significantly or fully incorporate third-party, cloud-hosted applications and services, to manage server-side logic and state. These are typically “rich client” applications—think single-page web apps, or mobile apps—that use the vast ecosystem of cloud-accessible databases (e.g., Parse, Firebase), authentication services(e.g., Auth0, AWS Cognito), and so on. These types of services have been previously described as “(Mobile) Backend as a service", and I use “BaaS” as shorthand in the rest of this article. Serverless can also mean applications where server-side logic is still written by the application developer, but, unlike traditional architectures, it’s run in stateless compute containers that are event-triggered, ephemeral (may only last for one invocation), and fully managed by a third party. One way to think of this is “Functions as a Service” or “FaaS”.(Note: The original source for this name—a tweet by @marak—isno longer publicly available.) AWS Lambda is one of the most popular implementations of a Functions-as-a-Service platform at present, but there are many others, too.

这样的描述我相信有很多小伙伴不明白,我们可以这样子来理解Serverless:

它的中文直译就是【无服务器】

目前对于 Serverless 有几种解读方法:

  • 在某些场景可以解读为一种软件系统架构方法,通常称为 Serverless 架构
  • 而在另一些情况下,又可以代表一种产品形态,称为 Serverless 产品


可以理解为Severless=FAAS+BAAS 即函数即服务 (Function as a Service)+后端即服务 (Backend as a Service)

阿里云函数计算
阿里云函数计算是事件驱动的全托管计算服务。使用函数计算,您无需采购与管理服务器等基础设施,只需编写并上传代码。函数计算为您准备好计算资源,弹性地、可靠地运行任务,并提供日志查询、性能监控和报警等功能。

借助函数计算,您可以快速构建任何类型的应用和服务,并且只需为任务实际消耗的资源付费。


阿里云也为开发者朋友们提供了每月免费额度

二、成果介绍

疫情数据统计推送基于Python和阿里云Serverless函数计算开发。实现了使用Python爬取获得疫情数据并进行整理,使用函数计算配合定时触发器,每天定时推送全国疫情数据到企业微信。

三、背景意义

疫情防控常态化,在全球疫情不断加速蔓延态势下在短期内完全结束是不可能的,很有可能较长时期处于疫情防控的状态,这要求我们时刻保持警惕,及时了解疫情情况。疫情数据统计推送项目,顺应了此背景。企业员工每天打开手机微信就可以收到一条简约的推送,了解当日的疫情情况。

四、优势和不足

优势:相对各大媒体每日推送的疫情情况相比,此疫情数据统计推送更加简介,可以更快的获取到有效信息。使用了阿里云函数FC开发,维护方便,无需关注服务器等基础设施,可以根据企业微信推送的需求量自动扩缩容,而且成本极低。使用定时触发器,每天定时的触发程序,发送数据推送,无需人为干预。

不足:文字单调,将在后期推出数据可视化版本。

五、作品展示

项目代码:

import requests,random,jsonurl = "https://c.m.163.com/ug/api/wuhan/app/data/list-total"def UserAgent(): #随机获取请求头user_agent_list = ['Mozilla/5.0 (Windows NT 6.2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1464.0 Safari/537.36','Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.16 Safari/537.36','Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.3319.102 Safari/537.36','Mozilla/5.0 (X11; CrOS i686 3912.101.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36','Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36','Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1667.0 Safari/537.36','Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:17.0) Gecko/20100101 Firefox/17.0.6','Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1468.0 Safari/537.36','Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2224.3 Safari/537.36','Mozilla/5.0 (X11; CrOS i686 3912.101.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36']UserAgent={'User-Agent': random.choice(user_agent_list)}return UserAgentdef Get(arg1,arg2): #获取疫情url_json = requests.get(url=url,headers=UserAgent()).json()today_confirm = str(url_json['data']['chinaTotal']['today']['confirm'])#全国累计确诊较昨日新增today_input =str(url_json['data']['chinaTotal']['today']['input'])#全国较昨日新增境外输入today_storeConfirm = str(url_json['data']['chinaTotal']['today']['storeConfirm'])#全国现有确诊较昨日today_dead =str(url_json['data']['chinaTotal']['today']['dead'])#累计死亡较昨日新增today_heal = str(url_json['data']['chinaTotal']['today']['heal'])#累计治愈较昨日新增today_incrNoSymptom = str(url_json['data']['chinaTotal']['extData']['incrNoSymptom'])#无症状感染者较昨日total_confirm = str(url_json['data']['chinaTotal']['total']['confirm'])  # 全国累计确诊total_input = str(url_json['data']['chinaTotal']['total']['input'])  # 境外输入total_dead = str(url_json['data']['chinaTotal']['total']['dead'])  # 累计死亡total_heal = str(url_json['data']['chinaTotal']['total']['heal'])  # 累计治愈total_storeConfirm = str(url_json['data']['chinaTotal']['total']['confirm'] - url_json['data']['chinaTotal']['total']['dead'] - url_json['data']['chinaTotal']['total']['heal'])  # 全国现有确诊total_noSymptom = str(url_json['data']['chinaTotal']['extData']['noSymptom'])#无症状感染者lastUpdateTime = url_json['data']['lastUpdateTime']#截止时间data ='-' * 6 +'全国疫情数据实时统计' + '-' * 5 + '\n统计截至时间:'+ lastUpdateTime +'\n' + '-' * 27 + '\n' + \'  累计确诊:' + total_confirm + ' ; ' + '较昨日:' + today_confirm + \'\n  现有确诊:' + total_storeConfirm + ' ; ' + '较昨日:' + today_storeConfirm + \'\n  累计死亡:' + total_dead + ' ; ' + '较昨日:' + today_dead + \'\n  累计治愈:' + total_heal + ' ; ' + '较昨日:' + today_heal + \'\n  境外输入:' + total_input + ' ; ' + '较昨日:' + today_input + \'\n  无症状感染者:' + total_noSymptom + ' ; ' + '较昨日:' + today_incrNoSymptomprint(data)HtmlPuch_server(data)def HtmlPuch_server(data):url_wx = "https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key=3b4bd7fa-4063-477f-bbc6-0fe767c52fdf"headers = {"Content-Type": "text/plain"}push_data ={"msgtype": "text","text": {"content":data}}html = requests.post(url_wx,headers=headers,json=push_data)print(html.text)

使用阿里云函数计算FC服务:

使用定时触发器:

最终效果:

六、总结

通过Serverless我们不再需要关注务器等基础设施,只需编写并上传代码,只要为任务实际消耗的资源付费,每月的免费额度可以满足开发者的基本使用。现在函数计算FC为开发者提供一站式 Serverless 应用管理,从一键创建应用到快速体验。

原文链接

本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

看 Serverless Task 如何解决任务调度可观测性中的问题

在上篇文章《解密函数计算异步任务能力之「任务的状态及生命周期管理」》中,我们介绍了任务系统的状态管理,并介绍了用户应如何根据需求,对任务状态信息进行实时的查询等操作。在本篇中我们将会进一步走进函数计算异步任务,介绍异…

B站每日自动签到传统单节点网站的 Serverless 上云

什么是函数?刚刚考完数学没多久的我,脑力里立马想到的是自变量、因变量、函数值,也就是yf(x)。当然,在计算机里,函数function往往指的是一段被定义好的代码程序,我们可以通过传参调用这个定义好的函数&…

通过部署流行 Web 框架掌握 Serverless 技术

大家好,我是霍大侠,这个系列课程我们通过部署流行web框架,来学习掌握serverless的技术和架构。课程主要从实践介绍,实践演示,分析详解三个大的章节来一步一步学习。 前言 进入实验室-动手实践 点击下面链接进入阿里云…

一首歌的时间,手把手搭建基于FC的网站

部署网站 说好不哭 在接触serverless架构之前,我们如果想实现上线一个Web网站,就要在开发前期经过操作很多冗杂但又必须的步骤,不少小白可谓是快速的从入门到退坑。 编写代码,部署应用,部署数据库,申请域…

PolarDB-X 源码解读:事务的一生

概述 本文将主要解读 PolarDB-X 中事务部分的相关代码,着重解读事务的一生在计算节点(CN)中的关键代码:从开始、执行、到最后提交这一整个生命周期。 在阅读本文前,强烈推荐先阅读与 PolarDB-X 事务系统相关的文章&a…

阿里云云原生一体化数仓 — 湖仓一体新能力解读

一、基于 MaxCompute 的湖仓一体架构更新 基于MaxCompute 云数据仓库的湖仓一体架构近期进行架构升级。了解 MaxCompute 的同学可能比较清楚,MaxCompute 有两层结构,需要先创建 Project ,在 Project 里面创建表、资源等。传统数据库&#xf…

DM8168 DVRRDK软件框架研究

DM8168 DVRRDK软件框架研究 2016-07-26 11:39 72人阅读 评论(0) 收藏 举报分类:DM8168(18) Netra(DM8168)处理器是个多核处理器,每个核之间相互独立却又相互关联,如何高效简洁地利用每个核完成一…

基于函数计算自定义运行时快速部署一个 Springboot 项目

什么是函数计算? 函数计算是事件驱动的全托管计算服务。使用函数计算,您无需采购与管理服务器等基础设施,只需编写并上传代码。函数计算为您准备好计算资源,弹性地可靠地运行任务,并提供日志查询、性能监控和报警等功…

FFmpeg源代码简单分析:avformat_open_input()

登录 | 注册 收藏成功 确定收藏失败,请重新收藏 确定标题 标题不能为空网址 标签 摘要 公开 取消收藏 查看所有私信查看所有通知 暂没有新通知返回通知列表 下一条 上一条 分享资讯传PPT/文档提问题写博客传资源创建项目创建代码片baidu_34732018编辑自我介绍&…

硬之城携手阿里云 Serverless 应用引擎(SAE)打造低代码平台

硬之城成立于 2015 年,是一家以电子元器件 BOM 整体供应为核心,为中小科技型硬件企业提供 BOM 标准化、BOM 报价、BOM 采购、BOM 交付和 SMT 一站式 PCBA 服务的电子产业数字供应链与智能制造平台。 电子产业互联网的需求是离散和复杂多变的&#xff0c…

阿里云 Serverless 异步任务处理系统在数据分析领域的应用

异步任务处理系统中的数据分析 数据处理、机器学习训练、数据统计分析是最为常见的一类离线任务。这类任务往往都是经过了一系列的预处理后,由上游统一发送到任务平台进行批量训练及分析。在处理语言方面,Python 由于其所提供的丰富的数据处理库&#x…

代码重构:面向单元测试

重构代码时,我们常常纠结于这样的问题: 需要进一步抽象吗?会不会导致过度设计?如果需要进一步抽象的话,如何进行抽象呢?有什么通用的步骤或者法则吗? 单元测试是我们常用的验证代码正确性的工具…

如何把 thinkphp5 的项目迁移到阿里云函数计算来应对流量洪峰?

1. 为什么要迁移到阿里云函数? 我的项目是一个节日礼品领取项目,过节的时候会有短时间的流量洪峰。平时访问量很低。之前的架构是购买的阿里云alb多台ecs云msyql云redis。最大的问题就是成本问题。平时流量低的时候ecs成本也无法缩减。 阿里云函数计算…

[总结]视音频编解码技术零基础学习方法

0. 生活中的视音频技术 平时我们打开电脑中自己存电影的目录的话,一般都会如下图所示,一大堆五花八门的电影。(其实专业的影视爱好者一概会把影视文件分门别类的,但我比较懒,一股脑把电影放在了一起) 因…

Helm Chart 多环境、多集群交付实践,透视资源拓扑和差异

Helm Charts[1] 如今已是一种非常流行的软件打包方式,在其应用市场中你可以找到接近一万款适用于云原生环境的软件。然后在如今的混合云多集群环境中,业务越来越依赖部署到不同的集群、不同的环境、同时指定不同的配置。再这样的环境下,单纯依…

跨全端 SDK 技术演进

关于为什么要选择跨平台的实现方式 Write Once, Run AnyWhere. 越来越多的业务需求都有统一的业务诉求,按照传统的方式,在开发、测试、维护上的成本都是乘以N的,体验也很难做到一致性,特别是复杂的业务,实…

SKG 渠道中台借助 SAE + 大禹打造云原生 DevOPS,提效 60%

项目背景 未来穿戴健康科技股份有限公司(SKG)是一家专注为个人与家庭提供智能可穿戴健康产品的高新技术企业,专业从事 SKG 品牌可穿戴健康产品和便携式健康产品的研发、设计、生产及销售。 随着市场需求的迅速变化,SKG 的 IT 系…

资源预测数字模型搭建思路分享

业务背景 资源预测是项目管理过程中的一个环节,即通过搭建合适的数据模型,对未来的项目人力资源投入情况进行有效预测,可以更加精准的完成项目资源规划并能及时发现问题进行相关调整。 难题和痛点 PM排期时没有有效数据支撑资源使用情况&a…

视频压缩:I帧、P帧、B帧

/************************************************************************************************************************************************************************************** **说明: 1.本文通过整理而来,集多个高手的精华&a…

EasyNLP 中文文图生成模型带你秒变艺术家

导读 宣物莫大于言,存形莫善于画。 --【晋】陆机 多模态数据(文本、图像、声音)是人类认识、理解和表达世间万物的重要载体。近年来,多模态数据的爆炸性增长促进了内容互联网的繁荣,也带来了大量多模态内容理解和生成…