一文详解用 eBPF 观测 HTTP

前言

随着eBPF推出,由于具有高性能、高扩展、安全性等优势,目前已经在网络、安全、可观察等领域广泛应用,同时也诞生了许多优秀的开源项目,如Cilium、Pixie等,而iLogtail 作为阿里内外千万实例可观测数据的采集器,eBPF 网络可观测特性也预计会在未来8月发布。下文主要基于eBPF观测HTTP 1、HTTP 1.1以及HTTP2的角度介绍eBPF的针对可观测场景的应用,同时回顾HTTP 协议自身的发展。

eBPF基本介绍

eBPF 是近几年 Linux Networkworking 方面比较火的技术之一,目前在安全、网络以及可观察性方面应用广泛,比如CNCF 项目Cilium 完全是基于eBPF 技术实现,解决了传统Kube-proxy在大集群规模下iptables 性能急剧下降的问题。从基本功能上来说eBPF 提供了一种兼具性能与灵活性来自定义交互内核态与用户态的新方式,具体表现为eBPF 提供了友好的api,使得可以通过依赖libbpf、bcc等SDK,将自定义业务逻辑安全的嵌入内核态执行,同时通过BPF Map 机制(不需要多次拷贝)直接在内核态与用户态传递所需数据。

当聚焦在可观测性方面,我们可以将eBPF 类比为Javaagent进行介绍。Javaagent的基本功能是程序启动时对于已存在的字节码进行代理字节码织入,从而在无需业务修改代码的情况下,自动为用户程序加入hook点,比如在某函数进入和返回时添加hook点可以计算此函数的耗时。而eBPF 类似,提供了一系列内核态执行的切入点函数,无需修改代码,即可观测应用的内部状态,以下为常用于可观测性的切入点类型:

  • kprobe:动态附加到内核调用点函数,比如在内核exec系统调用前检查参数,可以BPF 程序设置 SEC("kprobe/sys_exec")头部进行切入。
  • tracepoints:内核已经提供好的一些切入点,可以理解为静态的kprobe,比如syscall 的connect函数。
  • uprobe:与krobe对应,动态附加到用户态调用函数的切入点称为uprobe,相比如kprobe 内核函数的稳定性,uprobe 的函数由开发者定义,当开发者修改函数签名时,uprobe BPF 程序同样需要修改函数切入点签名。
  • perf_events:将BPF 代码附加到Perf事件上,可以依据此进行性能分析。

TCP与eBPF

由于本文观测协议HTTP 1、HTTP1.1以及HTTP2 都是基于TCP 模型,所以先回顾一下 TCP 建立连接的过程。首先Client 端通过3次握手建立通信,从TCP协议上来说,连接代表着状态信息,比如包含seq、ack、窗口/buffer等,而tcp握手就是协商出来这些初始值;而从操作系统的角度来说,建立连接后,TCP 创建了INET域的 socket,同时也占用了FD 资源。对于四次挥手,从TCP协议上来说,可以理解为释放终止信号,释放所维持的状态;而从操作系统的角度来说,四次挥手后也意味着Socket FD 资源的回收。

而对于应用层的角度来说,还有一个常用的概念,这就是长连接,但长连接对于TCP传输层来说,只是使用方式的区别:

  • 应用层短连接:三次握手+单次传输数据+四次挥手,代表协议HTTP 1
  • 应用层长连接:三次握手+多次传输数据+四次挥手,代表协议 HTTP 1.1、HTTP2

参考下图TCP 建立连接过程内核函数的调用,对于eBPF 程序可以很容易的定义好tracepoints/kprobe 切入点。例如建立连接过程可以切入 accept 以及connect 函数,释放链接过程可以切入close过程,而传输数据可以切入read 或write函数。

基于TCP 大多数切入点已经被静态化为tracepoints,因此BPF 程序定义如下切入点来覆盖上述提到的TCP 核心函数(sys_enter 代表进入时切入,sys_exit 代表返回时切入)。

SEC("tracepoint/syscalls/sys_enter_connect") SEC("tracepoint/syscalls/sys_exit_connect") SEC("tracepoint/syscalls/sys_enter_accept") SEC("tracepoint/syscalls/sys_exit_accept") SEC("tracepoint/syscalls/sys_enter_accept4") SEC("tracepoint/syscalls/sys_exit_accept4") SEC("tracepoint/syscalls/sys_enter_close") SEC("tracepoint/syscalls/sys_exit_close") SEC("tracepoint/syscalls/sys_enter_write") SEC("tracepoint/syscalls/sys_exit_write") SEC("tracepoint/syscalls/sys_enter_read") SEC("tracepoint/syscalls/sys_exit_read") SEC("tracepoint/syscalls/sys_enter_sendmsg") SEC("tracepoint/syscalls/sys_exit_sendmsg") SEC("tracepoint/syscalls/sys_enter_recvmsg") SEC("tracepoint/syscalls/sys_exit_recvmsg") ....

结合上述概念,我们以iLogtail的eBPF 工作模型为例,介绍一个可观测领域的eBPF 程序是如何真正工作的。更多详细内容可以参考此分享: 基于eBPF的应用可观测技术实践。如下图所示,iLogtaileBPF 程序的工作空间分为Kernel Space与User Space。

Kernel Space 主要负责数据的抓取与预处理:

  • 抓取:Hook模块会依据KProbe定义拦截网络数据,虚线中为具体的KProbe 拦截的内核函数(使用上述描述的SEC进行定义),如connect、accept 以及write 等。
  • 预处理:预处理模块会根据用户态配置进行数据的拦截丢弃以及数据协议的推断,只有符合需求的数据才会传递给SendToUserSpace模块,而其他数据将会被丢弃。其后SendToUserSpace 模块通过eBPF Map 将过滤后的数据由内核态数据传输到用户态。

User Space 的模块主要负责数据分析、聚合以及管理:

  • 分析:Process 模块会不断处理eBPF Map中存储的网络数据,首先由于Kernel 已经推断协议类型,Process 模块将根据此类型进行细粒度的协议分析,如分析MySQL 协议的SQL、分析HTTP 协议的状态码等。其次由于 Kernel 所传递的连接元数据信息只有Pid 与
  • FD 等进程粒度元信息,而对于Kubernetes 可观测场景来说,Pod、Container 等资源定义更有意义,所以Correlate Meta 模块会为Process 处理后的数据绑定容器相关的元数据信息。
  • 聚合:当绑定元数据信息后,Aggreate 模块会对数据进行聚合操作以避免重复数据传输,比如聚合周期内某SQL 调用1000次,Aggreate 模块会将最终数据抽象为 XSQL:1000 的形式进行上传。
  • 管理:整个eBPF 程序交互着大量着进程与连接数据,因此eBPF 程序中对象的生命周期需要与机器实际状态相符,当进程或链接释放,相应的对象也需要释放,这也正对应着Connection Management 与Garbage Collection 的职责。

eBPF 数据解析

HTTP 1 、HTTP1.1以及HTTP2 数据协议都是基于TCP的,参考上文,一定有以下函数调用:

  1. connect 函数:函数签名为int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen), 从函数签名入参可以获取使用的socket 的fd,以及对端地址等信息。
  2. accept 函数:函数签名为int accept(int sockfd, struct sockaddr addr, socklen_t addrlen), 从函数签名入参同样可以获取使用的socket 的fd,以及对端地址等信息。
  3. sendmsg函数:函数签名为 ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags),从函数签名可以看出,基于此函数可以拿到发送的数据包,以及使用的socket 的fd信息,但无法直接基于入参知晓对端地址。
  4. recvmsg函数:函数签名为 ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags),从函数签名可以看出,基于此函数我们拿到接收的数据包,以及使用的socket 的fd信息,但无法直接基于入参知晓对端地址。
  5. close 函数:函数签名为 int close(int fd),从函数签名可以看出,基于此函数可以拿到即将关闭的fd信息。

HTTP 1 / HTTP 1.1 短连接模式

HTTP 于1996年推出,HTTP 1 在用户层是短连接模型,也就意味着每一次发送数据,都会伴随着connect、accept以及close 函数的调用,这就以为这eBPF程序可以很容易的寻找到connect 的起始点,将传输数据与地址进行绑定,进而构建服务的上下游调用关系。

可以看出HTTP 1 或者HTTP1.1 短连接模式是对于eBPF 是非常友好的协议,因为可以轻松的关联地址信息与数据信息,但回到HTTP 1/HTTP1.1 短连接模式 本身来说,‘友好的代价’不仅意味着带来每次TCP 连接与释放连接的消耗,如果两次传输数据的HTTP Header 头相同,Header 头也存在冗余传输问题,比如下列数据的头Host、Accept 等字段。

HTTP 1.1 长连接

HTTP 1.1 于HTTP 1.0 发布的一年后发布(1997年),提供了缓存处理、带宽优化、错误通知管理、host头处理以及长连接等特性。而长连接的引入也部分解决了上述HTTP1中每次发送数据都需要经过三次握手以及四次挥手的过程,提升了数据的发送效率。但对于使用eBPF 观察HTTP数据来说,也带来了新的问题,上文提到建立地址与数据的绑定依赖于在connect 时进行probe,通过connect 参数拿到数据地址,从而与后续的数据包绑定。但回到长连接情况,假如connect 于1小时之前建立,而此时才启动eBPF程序,所以我们只能探测到数据包函数的调用,如send或recv函数。此时应该如何建立地址与数据的关系呢?

首先可以回到探测函数的定义,可以发现此时虽然没有明确的地址信息,但是可以知道此TCP 报文使用的Socket 与FD 信息。因此可以使用 netlink 获取此Socket 的元信息,进行对长连接补充对端地址,进而在HTTP 1.1 长连接协议构建服务拓扑与分析数据明细。

ssize_t sendmsg(int sockfd, const struct msghdr msg, int flags) ssize_t recvmsg(int sockfd, struct msghdr msg, int flags)

HTTP 2

在HTTP 1.1 发布后,由于冗余传输以及传输模型串行等问题,RPC 框架基本上都是进行了私有化协议定义,如Dubbo 等。而在2015年,HTTP2 的发布打破了以往对HTTP 协议的很多诟病,除解决在上述我们提到的Header 头冗余传输问题,还解决TCP连接数限制、传输效率、队头拥塞等问题,而 gRPC正式基于HTTP2 构建了高性能RPC 框架,也让HTTP 1 时代层出不穷的通信协议,也逐渐走向了归一时代,比如Dubbo3 全面兼容gRPC/HTTP2 协议。

特性

以下内容首先介绍一些HTTP2 与eBPF 可观察性相关的关键特性。

多路复用

HTTP 1 是一种同步、独占的协议,客户端发送消息,等待服务端响应后,才进行新的信息发送,这种模式浪费了TCP 全双工模式的特性。因此HTTP2 允许在单个连接上执行多个请求,每个请求相应使用不同的流,通过二进制分帧层,为每个帧分配一个专属的stream 标识符,而当接收方收到信息时,接收方可以将帧重组为完整消息,提升了数据的吞吐。此外可以看到由于Stream 的引入,Header 与Data 也进行了分离设计,每次传输数据Heaer 帧发送后为此后Data帧的统一头部,进一步提示了传输效率。

首部压缩

HTTP 首部用于发送与请求和响应相关的额外信息,HTTP2引入首部压缩概念,使用与正文压缩不同的技术,支持跨请求压缩首部,可以避免正文压缩使用算法的安全问题。HTTP2采用了基于查询表和Huffman编码的压缩方式,使用由预先定义的静态表和会话过程中创建的动态表,没有引用索引表的首部可以使用ASCII编码或者Huffman编码传输。

但随着性能的提升,也意味着越来越多的数据避免传输,这也同时意味着对eBPF 程序可感知的数据会更少,因此HTTP2协议的可观察性也带来了新的问题,以下我们使用gRPC不同模式以及Wireshark 分析HTTP2协议对eBPF 程序可观测性的挑战。

GRPC

Simple RPC

Simple RPC 是GRPC 最简单的通信模式,请求和响应都是一条二进制消息,如果保持连接可以类比为HTTP 1.1 的长连接模式,每次发送收到响应,之后再继续发送数据。

但与HTTP 1 不同的是首部压缩的引入,如果维持长连接状态,后续发的数据包Header 信息将只存储索引值,而不是原始值,我们可以看到下图为Wirshark 抓取的数据包,首次发送是包含完整Header帧数据,而后续Heders 帧长度降低为15,减少了大量重复数据的传输。

Stream 模式

Stream 模式是gRPC 常用的模式,包含Server-side streaming RPC,Client-side streaming RPC,Bidirectional streaming RPC,从传输编码上来说与Simple RPC 模式没有不同,都分为Header 帧、Data帧等。但不同的在于Data 帧的数量,Simple RPC 一次发送或响应只包含一个Data帧 模式,而Stream 模式可以包含多个。

1、Server-side streaming RPC:与Simple RPC 模式不同,在Server-side streaming RPC 中,当从客户端接收到请求时,服务器会发回一系列响应。此响应消息序列在客户端发起的同一 HTTP 流中发送。如下图所示,服务器收到来自客户端的消息,并以帧消息的形式发送多个响应消息。最后,服务器通过发送带有呼叫状态详细信息的尾随元数据来结束流。

2、Client-side streaming RPC: 在客户端流式 RPC 模式中,客户端向服务器发送多条消息,而服务器只返回一条消息。

3、Bidirectional streaming RPC:客户端和服务器都向对方发送消息流。客户端通过发送标头帧来设置 HTTP 流。建立连接后,客户端和服务器都可以同时发送消息,而无需等待对方完成。

tracepoint/kprobe的挑战

从上述wirshark 报文以及协议模式可以看出,历史针对HTTP1时代使用的tracepoint/kprobe 会存在以下挑战:

  • Stream 模式: 比如在Server-side stream 下,假如tracepoint/kprobe 探测的点为Data帧,因Data 帧因为无法关联Header 帧,都将变成无效Data 帧,但对于gRPC 使用场景来说还好,一般RPC 发送数据和接受数据都很快,所以很快就会有新的Header 帧收到,但这时会遇到更大的挑战,长连接下的首部压缩。

  • 长连接+首部压缩:当HTTP2 保持长连接,connect 后的第一个Stream 传输的Header 会为完整数据,而后续Header帧如与前置Header帧存在相同Header 字段,则数据传输的为地址信息,而真正的数据信息会交给Server 或Client 端的应用层SDK 进行维护,而如下图eBPF tracepoints/kprobe 在stream 1 的尾部帧才进行probe,对于后续的Header2 帧大概率不会存在完整的Header 元数据,如下图Wireshark 截图,包含了很多Header 信息的Header 长度仅仅为15,可以看出eBPF tracepoints/kprobe 对于这种情况很难处理。

从上文可知,HTTP2 可以归属于有状态的协议,而Tracepoint/Kprobe 对有状态的协议数据很难处理完善,某些场景下只能做到退化处理,以下为使用Tracepoint/Kprobe 处理的基本流程。

Uprobe 可行吗?

从上述tracepoint/kprobe 的挑战可以看到,HTTP 2 是一种很难被观测的协议,在HTTP2 的协议规范上,为减少Header 的传输,client 端以及server 端都需要维护Header 的数据,下图是grpc 实现的HTTP2 客户端维护Header 元信息的截图,所以在应用层可以做到拿到完整Header数据,也就绕过来首部压缩问题,而针对应用层协议,eBPF 提供的探测手段是Uprobe(用户态),而Pixie 项目也正是基于Uprobe 实践了gRPC HTTP2 流量的探测,详细内容可以参考此文章[1]。

下图展示了使用Uprobe 观测Go gRPC 流量的基本流程,如其中writeHeader 的函数定义为 func (l *loopyWriter) writeHeader(streamID uint32, endStream bool, hf []hpack.HeaderField, onWrite func()), 可以看到明确的Header 文本。

Kprobe 与Uprobe 对比

从上文可以看出Uprobe 实现简单,且不存在数据退化的问题,但Uprobe 真的完美吗?

  • 兼容性:上述方案仅仅是基于Golang gRPC 的 特定方法进行探测,也就意味着上述仅能覆盖Golang gRPC 流量的观察,对于Golang 其他HTTP2 库无法支持。
  • 多语言性:Uprobe 只能基于方法签名进行探测,更适用于C/GO 这种纯编译型语言,而对于Java 这种JVM 语言,因为运行时动态生成符号表,虽然可以依靠一些javaagent 将java 程序用于Uprobe,但是相对于纯编译型语言,用户使用成本或改造成本还是会更高一些。
  • 稳定性:Uprobe 相对于tracepoint/kprobe 来说是不稳定的,假如探测的函数函数签名有改变,这就意味着Uprobe 程序将无法工作,因为函数注册表的改变将使得Uprobe 无法找到切入点。

综合下来2种方案对比如下,可以看到2种方案对于HTTP2(有状态)的观测都存在部分取舍:

总结

上述我们回顾了HTTP1到HTTP2 时代的协议变迁,也看到HTTP2 提升传输效率做的种种努力,而正是HTTP2的巨大效率提升,也让gRPC选择了直接基于HTTP2 协议构建,而也是这种选择,让gRPC 成为了RPC 百家争鸣后是隐形事实协议。但我们也看到了协议的进步意味着更少的数据交互,也让数据可观察变得更加困难,比如HTTP2 使用eBPF目前尚无完美的解决方法,或使用Kprobe 观察,选择的多语言性、流量拓扑分析、但容许了失去流量细节的风险;或使用Uprobe 观察,选择了数据的细节,拓扑,但容许了多语言的兼容性问题。

iLogtail致力于打造覆盖Trace、Metrics 以及Logging 的可观测性的统一Agent,而eBPF 作为目前可观测领域的热门采集技术,提供了无侵入、安全、高效观测流量的能力,预计8月份,我们将在iLogtail Cpp正式开源后发布此部分功能,欢迎大家关注和互相交流。

参考:

TCP 的几个状态:https://www.s0nnet.com/archives/tcp-status

HTTP2.0的总结:https://liyaoli.com/2015-04-18/HTTP-2.0.html

Transmission Control Protocol:https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Computer Networks:https://www.cse.iitk.ac.in/users/dheeraj/cs425/lec18.html

Hypertext_Transfer_Protocol:https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

gRPC: A Deep Dive into the Communication Pattern:https://thenewstack.io/grpc-a-deep-dive-into-the-communication-pattern/

ebpf2-http2-tracing:https://blog.px.dev/ebpf-http2-tracing/

深入理解Linux socket:https://www.modb.pro/db/153725

基于eBPF的应用可观测技术实践:https://www.bilibili.com/video/BV1Gg411d7tq

作者 | 少旋

原文链接

本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面向云时代的龙蜥操作系统,是 CentOS 替代的最佳选择

2022 开放原子全球开源峰会 OpenAnolis 分论坛上,阿里云智能基础软件产品经理张鹏程做了《面向云时代的龙蜥操作系统,应对 CentOS 停服的最佳选择》的主题分享,介绍了操作系统产业迎来新发展格局,龙蜥致力于成为 CentOS 迁移的最佳…

数据库治理利器:动态读写分离

背景 在分布式系统架构中,业务的流量都是端到端的。每个请求都会经过很多层处理,比如从入口网关再到 Web Server 再到服务之间的调用,再到服务访问缓存或 DB 等存储。 对于我们的系统来说,数据库是非常重要的一块。因此无论是在稳…

为什么我要迁移 SpringBoot 到函数计算

为什么要迁移? 我们的业务有很多对外提供服务的 RESTful API,并且要执行很多不同的任务,例如同步连锁 ERP 中的商品信息到美团/饿了么等平台,在线开发票等。由于各种 API 和任务执行的不确定性,经常会因为资源不足导致…

Ingress Nginx 接连披露高危安全漏洞,是否有更好的选择?

今年 K8s Ingress Nginx 项目接连披露了三个高危安全漏洞(CVE-2021-25745[1], CVE-2021-25746[2], CVE-2021-25748[3]),该项目也在近期宣布将停止接收新功能 PR,专注修复并提升稳定性。Ingress Nginx 作为 K8s 项目自带的网关组件…

浅谈数据仓库架构设计

1. 数据中台与DW/BI/DSS 个人认为数据中台本质上是一种新的适配大数据技术发展的新的“数据仓库-决策支持(商业智能)”架构。这个架构是构建在传统的架构基础之上,对传统架构的一种新的发展。 数据中台从企业的视角出发,要求企业…

RocketMQ 消息集成:多类型业务消息 - 定时消息

引言 Apache RocketMQ 诞生至今,历经十余年大规模业务稳定性打磨,服务了 100% 阿里集团内部业务以及阿里云数以万计的企业客户。作为金融级可靠的业务消息方案,RocketMQ 从创建之初就一直专注于业务集成领域的异步通信能力构建。 本篇将继续…

一文读懂 BizDevOps:数字化转型下的技术破局

我们正迈向数字经济时代,数字化转型成为普遍行动。未来绝大多数业务都将运行在数字基座之上,软件系统成为业务创新和发展的核心引擎。在这一趋势下,产品研发的交付能力面临巨大挑战,产品研发的交付实践和方法亟待变革。 BizDevOp…

地址标准化服务AI深度学习模型推理优化实践

导读 深度学习已在面向自然语言处理等领域的实际业务场景中广泛落地,对它的推理性能优化成为了部署环节中重要的一环。推理性能的提升:一方面,可以充分发挥部署硬件的能力,降低用户响应时间,同时节省成本;…

淘系数据模型治理最佳实践

导读:本次分享题目为淘系数据模型治理,主要介绍过去一年淘系数据治理工作的一些总结。 具体将围绕以下4部分展开 模型背景&问题2问题分析3治理方案4未来规划 模型背景&问题 1.整体情况 首先介绍一下淘系的整体数据背景。 淘系的数据中台成立…

【走进RDS】之SQL Server性能诊断案例分析

客户的困扰 前几天某程序员小王向阿里云咨询他的SQL Server数据库整体负载较高,是否有优化的方法?前几天另外一个工单则是需要阿里云工程师帮忙定位某一个时刻的数据库性能尖刺的问题。 这些都是常见的性能诊断工单,其实数据库性能诊断不仅…

用了那么久的 Lombok,你知道它的原理么?

序言 在写Java代码的时候,最烦写setter/getter方法,自从有了Lombok插件不用再写那些方法之后,感觉再也回不去了,那你们是否好奇过Lombok是怎么把setter/getter方法给你加上去的呢?有的同学说我们Java引入Lombok之后会…

Fury:一个基于JIT动态编译的高性能多语言原生序列化框架

Fury是一个基于JIT动态编译的多语言原生序列化框架,支持Java/Python/Golang/C等语言,提供全自动的对象多语言/跨语言序列化能力,以及相比于别的框架最高20~200倍的性能。 引言 过去十多年大数据和分布式系统蓬勃发展,序列化是其…

阿里云丁宇:以领先的云原生技术,激活应用构建新范式

8 月 11 日,2022 阿里云飞天技术峰会在深圳举行,会上阿里云提出云原生激活应用构建三大范式,并发布最新的产品与解决方案。基于分布式云容器平台 ACK One,实现多地域分布式系统一致管理;发布 ACK FinOps 解决方案&…

操作系统的“冷板凳”要坐多久?万字长文解读16年开源老兵的坚持

想知道内核研发是怎样的体验?操作系统的“冷板凳”得坐多久才有春天?本文对话龙蜥社区理事长马涛,畅所欲言聊开源,一起来看看那些开源润物细无声背后的故事以及龙蜥社区运营的道法术。 高门槛的 Linux 内核研发,如何支…

在阿里做前端程序员,我是这样规划的

前端程序员常问的几个问题 此文来自一次团队内的分享。我是来自大淘宝技术内容前端团队的胤涧,负责内容中台技术。我的习惯是每个新财年初都会进行一次分享《HOW TO BE AN EMINENT ENGINEER》,聊聊目前团队阵型、OKR、业务和技术大图,聊聊我作…

如何可视化编写和编排你的 K8s 任务

简介 K8s Job 是 Kubernetes 中的一种资源,用来处理短周期的 Pod,相当于一次性任务,跑完就会把 Pod 销毁,不会一直占用资源,可以节省成本,提高资源利用率。 阿里任务调度 SchedulerX 和云原生结合&#x…

前端智能化实践——可微编程

什么是可微编程 通过动画、动效增加 UI 表现力,作为前端或多或少都做过。这里以弹性阻尼动画的函数为例: 函数在 时是效果最好的。最终,实现成 JavaScript 代码: function damping(x, max) {let y Math.abs(x);// 下面的参数都是…

解析 RocketMQ 业务消息——“事务消息”

引言:在分布式系统调用场景中存在这样一个通用问题,即在执行一个核心业务逻辑的同时,还需要调用多个下游做业务处理,而且要求多个下游业务和当前核心业务必须同时成功或者同时失败,进而避免部分成功和失败的不一致情况…

模型代码联动难? BizWorks 来助力

业务模型设计和沉淀是企业数字化转型过程中非常重要的一个环节, 日趋复杂的业务场景和协作模式给建模的有效性以及模型作为业务资产如何持续发挥价值带来了新的挑战: 设计完成的业务模型是否被合理实现了?经过数月、半年、1年迭代后,模型设计还能否对业务系统的演…

EasyNLP 集成 K-BERT 算法,借助知识图谱实现更优 Finetune

导读 知识图谱(Knowledge Graph)的概念⾸次出现2012年,由Google提出,它作为⼀种⼤规模语义⽹络, 准确地描述了实体以及实体之间的关系。知识图谱最早应⽤于搜索引擎,⽤于准备返回⽤户所需的知识。随着预训…