SSD框架训练自己的数据集

SSD框架训练自己的数据集

SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证。
本文介绍如何使用
SSD实现对自己数据集的训练和验证过程,内容包括:
1 数据集的标注
2 数据集的转换
3 使用SSD如何训练
4 使用SSD如何测试

1 数据集的标注 

  数据的标注使用
BBox-Label-Tool工具,该工具使用python实现,使用简单方便。修改后的工具支持多label的标签标注。
该工具生成的标签格式是
:

object_number
className x1min y1min x1max y1max
classname x2min y2min x2max y2max
...
1.1 labelTool工具的使用说明
  BBox-Label-Tool工具实现较简单,原始的git版本使用起来有一些小问题,进行了简单的修改,修改后的版本
#-------------------------------------------------------------------------------
# Name:        Object bounding box label tool
# Purpose:     Label object bboxes for ImageNet Detection data
# Author:      Qiushi
# Created:     06/06/2014#
#-------------------------------------------------------------------------------
from __future__ import division
from Tkinter import *
import tkMessageBox
from PIL import Image, ImageTk
import os
import glob
import random# colors for the bboxes
COLORS = ['red', 'blue', 'yellow', 'pink', 'cyan', 'green', 'black']
# image sizes for the examples
SIZE = 256, 256classLabels=['mat', 'door', 'sofa', 'chair', 'table', 'bed', 'ashcan', 'shoe']class LabelTool():def __init__(self, master):# set up the main frameself.parent = masterself.parent.title("LabelTool")self.frame = Frame(self.parent)self.frame.pack(fill=BOTH, expand=1)self.parent.resizable(width = False, height = False)# initialize global stateself.imageDir = ''self.imageList= []self.egDir = ''self.egList = []self.outDir = ''self.cur = 0self.total = 0self.category = 0self.imagename = ''self.labelfilename = ''self.tkimg = None# initialize mouse stateself.STATE = {}self.STATE['click'] = 0self.STATE['x'], self.STATE['y'] = 0, 0# reference to bboxself.bboxIdList = []self.bboxId = Noneself.bboxList = []self.hl = Noneself.vl = Noneself.currentClass = ''# ----------------- GUI stuff ---------------------# dir entry & loadself.label = Label(self.frame, text = "Image Dir:")self.label.grid(row = 0, column = 0, sticky = E)self.entry = Entry(self.frame)self.entry.grid(row = 0, column = 1, sticky = W+E)self.ldBtn = Button(self.frame, text = "Load", command = self.loadDir)self.ldBtn.grid(row = 0, column = 2, sticky = W+E)# main panel for labelingself.mainPanel = Canvas(self.frame, cursor='tcross')self.mainPanel.bind("<Button-1>", self.mouseClick)self.mainPanel.bind("<Motion>", self.mouseMove)self.parent.bind("<Escape>", self.cancelBBox)  # press <Espace> to cancel current bboxself.parent.bind("s", self.cancelBBox)self.parent.bind("a", self.prevImage) # press 'a' to go backforwardself.parent.bind("d", self.nextImage) # press 'd' to go forwardself.mainPanel.grid(row = 1, column = 1, rowspan = 4, sticky = W+N)# showing bbox info & delete bboxself.lb1 = Label(self.frame, text = 'Bounding boxes:')self.lb1.grid(row = 1, column = 2,  sticky = W+N)self.listbox = Listbox(self.frame, width = 22, height = 12)self.listbox.grid(row = 2, column = 2, sticky = N)self.btnDel = Button(self.frame, text = 'Delete', command = self.delBBox)self.btnDel.grid(row = 3, column = 2, sticky = W+E+N)self.btnClear = Button(self.frame, text = 'ClearAll', command = self.clearBBox)self.btnClear.grid(row = 4, column = 2, sticky = W+E+N)#select class typeself.classPanel = Frame(self.frame)self.classPanel.grid(row = 5, column = 1, columnspan = 10, sticky = W+E)label = Label(self.classPanel, text = 'class:')label.grid(row = 5, column = 1,  sticky = W+N)self.classbox = Listbox(self.classPanel,  width = 4, height = 2)self.classbox.grid(row = 5,column = 2)for each in range(len(classLabels)):function = 'select' + classLabels[each]print classLabels[each]btnMat = Button(self.classPanel, text = classLabels[each], command = getattr(self, function))btnMat.grid(row = 5, column = each + 3)# control panel for image navigationself.ctrPanel = Frame(self.frame)self.ctrPanel.grid(row = 6, column = 1, columnspan = 2, sticky = W+E)self.prevBtn = Button(self.ctrPanel, text='<< Prev', width = 10, command = self.prevImage)self.prevBtn.pack(side = LEFT, padx = 5, pady = 3)self.nextBtn = Button(self.ctrPanel, text='Next >>', width = 10, command = self.nextImage)self.nextBtn.pack(side = LEFT, padx = 5, pady = 3)self.progLabel = Label(self.ctrPanel, text = "Progress:     /    ")self.progLabel.pack(side = LEFT, padx = 5)self.tmpLabel = Label(self.ctrPanel, text = "Go to Image No.")self.tmpLabel.pack(side = LEFT, padx = 5)self.idxEntry = Entry(self.ctrPanel, width = 5)self.idxEntry.pack(side = LEFT)self.goBtn = Button(self.ctrPanel, text = 'Go', command = self.gotoImage)self.goBtn.pack(side = LEFT)# example pannel for illustrationself.egPanel = Frame(self.frame, border = 10)self.egPanel.grid(row = 1, column = 0, rowspan = 5, sticky = N)self.tmpLabel2 = Label(self.egPanel, text = "Examples:")self.tmpLabel2.pack(side = TOP, pady = 5)self.egLabels = []for i in range(3):self.egLabels.append(Label(self.egPanel))self.egLabels[-1].pack(side = TOP)# display mouse positionself.disp = Label(self.ctrPanel, text='')self.disp.pack(side = RIGHT)self.frame.columnconfigure(1, weight = 1)self.frame.rowconfigure(10, weight = 1)# for debugging
##        self.setImage()
##        self.loadDir()def loadDir(self, dbg = False):if not dbg:s = self.entry.get()self.parent.focus()self.category = int(s)else:s = r'D:\workspace\python\labelGUI'
##        if not os.path.isdir(s):
##            tkMessageBox.showerror("Error!", message = "The specified dir doesn't exist!")
##            return# get image listself.imageDir = os.path.join(r'./Images', '%d' %(self.category))self.imageList = glob.glob(os.path.join(self.imageDir, '*.jpg'))if len(self.imageList) == 0:print 'No .JPEG images found in the specified dir!'return   # set up output dirself.outDir = os.path.join(r'./Labels', '%d' %(self.category))if not os.path.exists(self.outDir):os.mkdir(self.outDir)labeledPicList = glob.glob(os.path.join(self.outDir, '*.txt'))for label in labeledPicList:data = open(label, 'r')if '0\n' == data.read():data.close()continuedata.close()picture = label.replace('Labels', 'Images').replace('.txt', '.jpg')if picture in self.imageList:self.imageList.remove(picture)# default to the 1st image in the collectionself.cur = 1self.total = len(self.imageList)self.loadImage()print '%d images loaded from %s' %(self.total, s)def loadImage(self):# load imageimagepath = self.imageList[self.cur - 1]self.img = Image.open(imagepath)self.imgSize = self.img.sizeself.tkimg = ImageTk.PhotoImage(self.img)self.mainPanel.config(width = max(self.tkimg.width(), 400), height = max(self.tkimg.height(), 400))self.mainPanel.create_image(0, 0, image = self.tkimg, anchor=NW)self.progLabel.config(text = "%04d/%04d" %(self.cur, self.total))# load labels
        self.clearBBox()self.imagename = os.path.split(imagepath)[-1].split('.')[0]labelname = self.imagename + '.txt'self.labelfilename = os.path.join(self.outDir, labelname)bbox_cnt = 0if os.path.exists(self.labelfilename):with open(self.labelfilename) as f:for (i, line) in enumerate(f):if i == 0:bbox_cnt = int(line.strip())continuetmp = [int(t.strip()) for t in line.split()]
##                    print tmp
                    self.bboxList.append(tuple(tmp))tmpId = self.mainPanel.create_rectangle(tmp[0], tmp[1], \tmp[2], tmp[3], \width = 2, \outline = COLORS[(len(self.bboxList)-1) % len(COLORS)])self.bboxIdList.append(tmpId)self.listbox.insert(END, '(%d, %d) -> (%d, %d)' %(tmp[0], tmp[1], tmp[2], tmp[3]))self.listbox.itemconfig(len(self.bboxIdList) - 1, fg = COLORS[(len(self.bboxIdList) - 1) % len(COLORS)])def saveImage(self):with open(self.labelfilename, 'w') as f:f.write('%d\n' %len(self.bboxList))for bbox in self.bboxList:f.write(' '.join(map(str, bbox)) + '\n')print 'Image No. %d saved' %(self.cur)def mouseClick(self, event):if self.STATE['click'] == 0:self.STATE['x'], self.STATE['y'] = event.x, event.y#self.STATE['x'], self.STATE['y'] = self.imgSize[0], self.imgSize[1]else:x1, x2 = min(self.STATE['x'], event.x), max(self.STATE['x'], event.x)y1, y2 = min(self.STATE['y'], event.y), max(self.STATE['y'], event.y)if x2 > self.imgSize[0]:x2 = self.imgSize[0]if y2 > self.imgSize[1]:y2 = self.imgSize[1]                self.bboxList.append((self.currentClass, x1, y1, x2, y2))self.bboxIdList.append(self.bboxId)self.bboxId = Noneself.listbox.insert(END, '(%d, %d) -> (%d, %d)' %(x1, y1, x2, y2))self.listbox.itemconfig(len(self.bboxIdList) - 1, fg = COLORS[(len(self.bboxIdList) - 1) % len(COLORS)])self.STATE['click'] = 1 - self.STATE['click']def mouseMove(self, event):self.disp.config(text = 'x: %d, y: %d' %(event.x, event.y))if self.tkimg:if self.hl:self.mainPanel.delete(self.hl)self.hl = self.mainPanel.create_line(0, event.y, self.tkimg.width(), event.y, width = 2)if self.vl:self.mainPanel.delete(self.vl)self.vl = self.mainPanel.create_line(event.x, 0, event.x, self.tkimg.height(), width = 2)if 1 == self.STATE['click']:if self.bboxId:self.mainPanel.delete(self.bboxId)self.bboxId = self.mainPanel.create_rectangle(self.STATE['x'], self.STATE['y'], \event.x, event.y, \width = 2, \outline = COLORS[len(self.bboxList) % len(COLORS)])def cancelBBox(self, event):if 1 == self.STATE['click']:if self.bboxId:self.mainPanel.delete(self.bboxId)self.bboxId = Noneself.STATE['click'] = 0def delBBox(self):sel = self.listbox.curselection()if len(sel) != 1 :returnidx = int(sel[0])self.mainPanel.delete(self.bboxIdList[idx])self.bboxIdList.pop(idx)self.bboxList.pop(idx)self.listbox.delete(idx)def clearBBox(self):for idx in range(len(self.bboxIdList)):self.mainPanel.delete(self.bboxIdList[idx])self.listbox.delete(0, len(self.bboxList))self.bboxIdList = []self.bboxList = []def selectmat(self):self.currentClass = 'mat'self.classbox.delete(0,END)self.classbox.insert(0, 'mat')self.classbox.itemconfig(0,fg = COLORS[0])def selectdoor(self):self.currentClass = 'door'    self.classbox.delete(0,END)    self.classbox.insert(0, 'door')self.classbox.itemconfig(0,fg = COLORS[0])def selectsofa(self):self.currentClass = 'sofa'    self.classbox.delete(0,END)    self.classbox.insert(0, 'sofa')self.classbox.itemconfig(0,fg = COLORS[0])def selectchair(self):self.currentClass = 'chair'    self.classbox.delete(0,END)    self.classbox.insert(0, 'chair')self.classbox.itemconfig(0,fg = COLORS[0])def selecttable(self):self.currentClass = 'table'    self.classbox.delete(0,END)    self.classbox.insert(0, 'table')self.classbox.itemconfig(0,fg = COLORS[0])def selectbed(self):self.currentClass = 'bed'self.classbox.delete(0,END)    self.classbox.insert(0, 'bed')self.classbox.itemconfig(0,fg = COLORS[0])def selectashcan(self):self.currentClass = 'ashcan'    self.classbox.delete(0,END)    self.classbox.insert(0, 'ashcan')self.classbox.itemconfig(0,fg = COLORS[0])def selectshoe(self):self.currentClass = 'shoe'    self.classbox.delete(0,END)    self.classbox.insert(0, 'shoe')self.classbox.itemconfig(0,fg = COLORS[0])    def prevImage(self, event = None):self.saveImage()if self.cur > 1:self.cur -= 1self.loadImage()def nextImage(self, event = None):self.saveImage()if self.cur < self.total:self.cur += 1self.loadImage()def gotoImage(self):idx = int(self.idxEntry.get())if 1 <= idx and idx <= self.total:self.saveImage()self.cur = idxself.loadImage()##    def setImage(self, imagepath = r'test2.png'):
##        self.img = Image.open(imagepath)
##        self.tkimg = ImageTk.PhotoImage(self.img)
##        self.mainPanel.config(width = self.tkimg.width())
##        self.mainPanel.config(height = self.tkimg.height())
##        self.mainPanel.create_image(0, 0, image = self.tkimg, anchor=NW)if __name__ == '__main__':root = Tk()tool = LabelTool(root)root.mainloop()
main.py
 

  使用方法:   

     (1) 在BBox-Label-Tool/Images目录下创建保存图片的目录, 目录以数字命名(BBox-Label-Tool/Images/1), 然后将待标注的图片copy到1这个目录下;

     (2) 在BBox-Label-Tool目录下执行命令   python main.py

     (3) 在工具界面上, Image Dir 框中输入需要标记的目录名(比如 1), 然后点击load按钮, 工具自动将Images/1目录下的图片加载进来;

      需要说明一下, 如果目录中的图片已经标注过,点击load时不会被重新加载进来.

     (4) 该工具支持多类别标注, 画bounding boxs框标定之前,需要先选定类别,然后再画框.

     (5) 一张图片标注完后, 点击Next>>按钮, 标注下一张图片,  图片label成功后,会在BBox-Label-Tool/Labels对应的目录下生成与图片文件名对应的label文件.

2 数据集的转换

  caffe训练使用LMDB格式的数据,ssd框架中提供了voc数据格式转换成LMDB格式的脚本。
所以实践中先将
BBox-Label-Tool标注的数据转换成voc数据格式,然后再转换成LMDB
格式。

2.1 voc数据格式



(1)Annotations中保存的是xml格式的label信息
<?xml version="1.0" ?>
<annotation><folder>VOC2007</folder><filename>1.jpg</filename><source><database>My Database</database><annotation>VOC2007</annotation><image>flickr</image><flickrid>NULL</flickrid></source><owner><flickrid>NULL</flickrid><name>idaneel</name></owner><size><width>320</width><height>240</height><depth>3</depth></size><segmented>0</segmented><object><name>door</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>109</xmin><ymin>3</ymin><xmax>199</xmax><ymax>204</ymax></bndbox></object>
</annotation>
VOC XML内容信息
 







(2)ImageSet目录下的Main目录里存放的是用于表示训练的图片集和测试的图片集




(3)JPEGImages目录下存放所有图片集







(4)label目录下保存的是BBox-Label-Tool工具标注好的bounding box坐标文件,
该目录下的文件就是待转换的
label标签文件。





2.2 Label转换成VOC数据格式
BBox-Label-Tool工具标注好的bounding box坐标文件转换成VOC数据格式的形式.
具体的转换过程包括了两个步骤:
(1)BBox-Label-Tool下的txt格式保存的bounding box信息转换成VOC数据格式下以xml方式表示
(2)生成用于训练的数据集和用于测试的数据集。
用python实现了上述两个步骤的换转。
createXml.py 完成txt到xml的转换; 执行脚本./createXml.py

#!/usr/bin/env pythonimport os
import sys
import cv2
from itertools import islice
from xml.dom.minidom import Documentlabels='label'
imgpath='JPEGImages/'
xmlpath_new='Annotations/'
foldername='VOC2007'def insertObject(doc, datas):obj = doc.createElement('object')name = doc.createElement('name')name.appendChild(doc.createTextNode(datas[0]))obj.appendChild(name)pose = doc.createElement('pose')pose.appendChild(doc.createTextNode('Unspecified'))obj.appendChild(pose)truncated = doc.createElement('truncated')truncated.appendChild(doc.createTextNode(str(0)))obj.appendChild(truncated)difficult = doc.createElement('difficult')difficult.appendChild(doc.createTextNode(str(0)))obj.appendChild(difficult)bndbox = doc.createElement('bndbox')xmin = doc.createElement('xmin')xmin.appendChild(doc.createTextNode(str(datas[1])))bndbox.appendChild(xmin)ymin = doc.createElement('ymin')                ymin.appendChild(doc.createTextNode(str(datas[2])))bndbox.appendChild(ymin)                xmax = doc.createElement('xmax')                xmax.appendChild(doc.createTextNode(str(datas[3])))bndbox.appendChild(xmax)                ymax = doc.createElement('ymax')    if  '\r' == str(datas[4])[-1] or '\n' == str(datas[4])[-1]:data = str(datas[4])[0:-1]else:data = str(datas[4])ymax.appendChild(doc.createTextNode(data))bndbox.appendChild(ymax)obj.appendChild(bndbox)                return objdef create():for walk in os.walk(labels):for each in walk[2]:fidin=open(walk[0] + '/'+ each,'r')objIndex = 0for data in islice(fidin, 1, None):        objIndex += 1data=data.strip('\n')datas = data.split(' ')if 5 != len(datas):print 'bounding box information error'continuepictureName = each.replace('.txt', '.jpg')imageFile = imgpath + pictureNameimg = cv2.imread(imageFile)imgSize = img.shapeif 1 == objIndex:xmlName = each.replace('.txt', '.xml')f = open(xmlpath_new + xmlName, "w")doc = Document()annotation = doc.createElement('annotation')doc.appendChild(annotation)folder = doc.createElement('folder')folder.appendChild(doc.createTextNode(foldername))annotation.appendChild(folder)filename = doc.createElement('filename')filename.appendChild(doc.createTextNode(pictureName))annotation.appendChild(filename)source = doc.createElement('source')                database = doc.createElement('database')database.appendChild(doc.createTextNode('My Database'))source.appendChild(database)source_annotation = doc.createElement('annotation')source_annotation.appendChild(doc.createTextNode(foldername))source.appendChild(source_annotation)image = doc.createElement('image')image.appendChild(doc.createTextNode('flickr'))source.appendChild(image)flickrid = doc.createElement('flickrid')flickrid.appendChild(doc.createTextNode('NULL'))source.appendChild(flickrid)annotation.appendChild(source)owner = doc.createElement('owner')flickrid = doc.createElement('flickrid')flickrid.appendChild(doc.createTextNode('NULL'))owner.appendChild(flickrid)name = doc.createElement('name')name.appendChild(doc.createTextNode('idaneel'))owner.appendChild(name)annotation.appendChild(owner)size = doc.createElement('size')width = doc.createElement('width')width.appendChild(doc.createTextNode(str(imgSize[1])))size.appendChild(width)height = doc.createElement('height')height.appendChild(doc.createTextNode(str(imgSize[0])))size.appendChild(height)depth = doc.createElement('depth')depth.appendChild(doc.createTextNode(str(imgSize[2])))size.appendChild(depth)annotation.appendChild(size)segmented = doc.createElement('segmented')segmented.appendChild(doc.createTextNode(str(0)))annotation.appendChild(segmented)            annotation.appendChild(insertObject(doc, datas))else:annotation.appendChild(insertObject(doc, datas))try:f.write(doc.toprettyxml(indent = '    '))f.close()fidin.close()except:passif __name__ == '__main__':create()
createXml.py

 

  createTest.py 生成训练集和测试集标识文件; 执行脚本

  ./createTest.py %startID% %endID% %testNumber%

 
#!/usr/bin/env pythonimport os
import sys
import randomtry:start = int(sys.argv[1])end = int(sys.argv[2])test = int(sys.argv[3])allNum = end-start+1
except:print 'Please input picture range'print './createTest.py 1 1500 500'os._exit(0)b_list = range(start,end)
blist_webId = random.sample(b_list, test)
blist_webId = sorted(blist_webId) 
allFile = []testFile = open('ImageSets/Main/test.txt', 'w')
trainFile = open('ImageSets/Main/trainval.txt', 'w')for i in range(allNum):allFile.append(i+1)for test in blist_webId:allFile.remove(test)testFile.write(str(test) + '\n')for train in allFile:trainFile.write(str(train) + '\n')
testFile.close()
trainFile.close()
createTest.py
 

说明: 由于BBox-Label-Tool实现相对简单,该工具每次只能对一个类别进行打标签,所以转换脚本

每一次也是对一个类别进行数据的转换,这个问题后续需要优化改进。

优化后的BBox-Label-Tool工具,支持多类别标定,生成的label文件中增加了类别名称信息。

使用时修改classLabels,改写成自己的类别, 修改后的工具代码参见1.1中的main.py 

 

2.3  VOC数据转换成LMDB数据

  SSD提供了VOC数据到LMDB数据的转换脚本 data/VOC0712/create_list.sh 和 ./data/VOC0712/create_data.sh,这两个脚本是完全针对VOC0712目录下的数据进行的转换。
  实现中为了不破坏VOC0712目录下的数据内容,针对我们自己的数据集,修改了上面这两个脚本,
将脚本中涉及到VOC0712的信息替换成我们自己的目录信息。
在处理我们的数据集时,将VOC0712替换成indoor。
具体的步骤如下:
  (1) 在 $HOME/data/VOCdevkit目录下创建indoor目录,该目录中存放自己转换完成的VOC数据集;
  (2) $CAFFE_ROOT/examples目录下创建indoor目录;
(3) $CAFFE_ROOT/data目录下创建indoor目录,同时将data/VOC0712下的create_list.sh,create_data.sh,labelmap_voc.prototxt
这三个文件copy到indoor目录下,分别重命名为
create_list_indoor.sh,create_data_indoor.sh, labelmap_indoor.prototxt
  (4)对上面新生成的两个create文件进行修改,主要修改是将VOC0712相关的信息替换成indoor
  修改后的这两个文件分别为:  
#!/bin/bashroot_dir=$HOME/data/VOCdevkit/
sub_dir=ImageSets/Main
bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"for dataset in trainval test    
dodst_file=$bash_dir/$dataset.txtif [ -f $dst_file ]thenrm -f $dst_filefifor name in indoordoif [[ $dataset == "test" && $name == "VOC2012" ]]thencontinuefiecho "Create list for $name $dataset..."dataset_file=$root_dir/$name/$sub_dir/$dataset.txtimg_file=$bash_dir/$dataset"_img.txt"cp $dataset_file $img_filesed -i "s/^/$name\/JPEGImages\//g" $img_filesed -i "s/$/.jpg/g" $img_filelabel_file=$bash_dir/$dataset"_label.txt"cp $dataset_file $label_filesed -i "s/^/$name\/Annotations\//g" $label_filesed -i "s/$/.xml/g" $label_filepaste -d' ' $img_file $label_file >> $dst_filerm -f $label_filerm -f $img_filedone# Generate image name and size infomation.if [ $dataset == "test" ]then$bash_dir/../../build/tools/get_image_size $root_dir $dst_file $bash_dir/$dataset"_name_size.txt"fi# Shuffle trainval file.if [ $dataset == "trainval" ]thenrand_file=$dst_file.randomcat $dst_file | perl -MList::Util=shuffle -e 'print shuffle(<STDIN>);' > $rand_filemv $rand_file $dst_filefi
done
create_list_indoor.sh
 
cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd )
root_dir=$cur_dir/../..cd $root_dirredo=1
data_root_dir="$HOME/data/VOCdevkit"
dataset_name="indoor"
mapfile="$root_dir/data/$dataset_name/labelmap_indoor.prototxt"
anno_type="detection"
db="lmdb"
min_dim=0
max_dim=0
width=0
height=0extra_cmd="--encode-type=jpg --encoded"
if [ $redo ]
thenextra_cmd="$extra_cmd --redo"
fi
for subset in test trainval
dopython $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name
done
create_data_indoor.sh
 (5)修改labelmap_indoor.prototxt,将该文件中的类别修改成和自己的数据集相匹配,注意需要保留一个label 0 , background类别
item {name: "none_of_the_above"label: 0display_name: "background"
}
item {name: "door"label: 1display_name: "door"
}
labelmap_indoor.prototxt
 

  完成上面步骤的修改后,可以开始LMDB数据数据的制作,在$CAFFE_ROOT目录下分别运行:

  ./data/indoor/create_list_indoor.sh

  ./data/indoor/create_data_indoor.sh

  命令执行完毕后,可以在$CAFFE_ROOT/indoor目录下查看转换完成的LMDB数据数据。

3 使用SSD进行自己数据集的训练

训练时使用ssd demo中提供的预训练好的VGGnet model : VGG_ILSVRC_16_layers_fc_reduced.caffemodel
将该模型保存到$CAFFE_ROOT/models/VGGNet下。
将ssd_pascal.py copy一份 ssd_pascal_indoor.py文件, 根据自己的数据集修改ssd_pascal_indoor.py
主要修改点:
(1)train_data和test_data修改成指向自己的数据集LMDB
   train_data = "examples/indoor/indoor_trainval_lmdb"
test_data = "examples/indoor/indoor_test_lmdb"
(2) num_test_image该变量修改成自己数据集中测试数据的数量
(3)num_classes 该变量修改成自己数据集中 标签类别数量数 + 1

针对我的数据集,ssd_pascal_indoor.py的内容为:
from __future__ import print_function
import caffe
from caffe.model_libs import *
from google.protobuf import text_formatimport math
import os
import shutil
import stat
import subprocess
import sys# Add extra layers on top of a "base" network (e.g. VGGNet or Inception).
def AddExtraLayers(net, use_batchnorm=True):use_relu = True# Add additional convolutional layers.from_layer = net.keys()[-1]# TODO(weiliu89): Construct the name using the last layer to avoid duplication.out_layer = "conv6_1"ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1)from_layer = out_layerout_layer = "conv6_2"ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2)for i in xrange(7, 9):from_layer = out_layerout_layer = "conv{}_1".format(i)ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1)from_layer = out_layerout_layer = "conv{}_2".format(i)ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2)# Add global pooling layer.name = net.keys()[-1]net.pool6 = L.Pooling(net[name], pool=P.Pooling.AVE, global_pooling=True)return net### Modify the following parameters accordingly ###
# The directory which contains the caffe code.
# We assume you are running the script at the CAFFE_ROOT.
caffe_root = os.getcwd()# Set true if you want to start training right after generating all files.
run_soon = True
# Set true if you want to load from most recently saved snapshot.
# Otherwise, we will load from the pretrain_model defined below.
resume_training = True
# If true, Remove old model files.
remove_old_models = False# The database file for training data. Created by data/VOC0712/create_data.sh
train_data = "examples/indoor/indoor_trainval_lmdb"
# The database file for testing data. Created by data/VOC0712/create_data.sh
test_data = "examples/indoor/indoor_test_lmdb"
# Specify the batch sampler.
resize_width = 300
resize_height = 300
resize = "{}x{}".format(resize_width, resize_height)
batch_sampler = [{'sampler': {},'max_trials': 1,'max_sample': 1,},{'sampler': {'min_scale': 0.3,'max_scale': 1.0,'min_aspect_ratio': 0.5,'max_aspect_ratio': 2.0,},'sample_constraint': {'min_jaccard_overlap': 0.1,},'max_trials': 50,'max_sample': 1,},{'sampler': {'min_scale': 0.3,'max_scale': 1.0,'min_aspect_ratio': 0.5,'max_aspect_ratio': 2.0,},'sample_constraint': {'min_jaccard_overlap': 0.3,},'max_trials': 50,'max_sample': 1,},{'sampler': {'min_scale': 0.3,'max_scale': 1.0,'min_aspect_ratio': 0.5,'max_aspect_ratio': 2.0,},'sample_constraint': {'min_jaccard_overlap': 0.5,},'max_trials': 50,'max_sample': 1,},{'sampler': {'min_scale': 0.3,'max_scale': 1.0,'min_aspect_ratio': 0.5,'max_aspect_ratio': 2.0,},'sample_constraint': {'min_jaccard_overlap': 0.7,},'max_trials': 50,'max_sample': 1,},{'sampler': {'min_scale': 0.3,'max_scale': 1.0,'min_aspect_ratio': 0.5,'max_aspect_ratio': 2.0,},'sample_constraint': {'min_jaccard_overlap': 0.9,},'max_trials': 50,'max_sample': 1,},{'sampler': {'min_scale': 0.3,'max_scale': 1.0,'min_aspect_ratio': 0.5,'max_aspect_ratio': 2.0,},'sample_constraint': {'max_jaccard_overlap': 1.0,},'max_trials': 50,'max_sample': 1,},]
train_transform_param = {'mirror': True,'mean_value': [104, 117, 123],'resize_param': {'prob': 1,'resize_mode': P.Resize.WARP,'height': resize_height,'width': resize_width,'interp_mode': [P.Resize.LINEAR,P.Resize.AREA,P.Resize.NEAREST,P.Resize.CUBIC,P.Resize.LANCZOS4,],},'emit_constraint': {'emit_type': caffe_pb2.EmitConstraint.CENTER,}}
test_transform_param = {'mean_value': [104, 117, 123],'resize_param': {'prob': 1,'resize_mode': P.Resize.WARP,'height': resize_height,'width': resize_width,'interp_mode': [P.Resize.LINEAR],},}# If true, use batch norm for all newly added layers.
# Currently only the non batch norm version has been tested.
use_batchnorm = False
# Use different initial learning rate.
if use_batchnorm:base_lr = 0.0004
else:# A learning rate for batch_size = 1, num_gpus = 1.base_lr = 0.00004# Modify the job name if you want.
job_name = "SSD_{}".format(resize)
# The name of the model. Modify it if you want.
model_name = "VGG_VOC0712_{}".format(job_name)# Directory which stores the model .prototxt file.
save_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the snapshot of models.
snapshot_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the job script and log file.
job_dir = "jobs/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the detection results.
output_result_dir = "{}/data/VOCdevkit/results/VOC2007/{}/Main".format(os.environ['HOME'], job_name)# model definition files.
train_net_file = "{}/train.prototxt".format(save_dir)
test_net_file = "{}/test.prototxt".format(save_dir)
deploy_net_file = "{}/deploy.prototxt".format(save_dir)
solver_file = "{}/solver.prototxt".format(save_dir)
# snapshot prefix.
snapshot_prefix = "{}/{}".format(snapshot_dir, model_name)
# job script path.
job_file = "{}/{}.sh".format(job_dir, model_name)# Stores the test image names and sizes. Created by data/VOC0712/create_list.sh
name_size_file = "data/indoor/test_name_size.txt"
# The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet.
pretrain_model = "models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel"
# Stores LabelMapItem.
label_map_file = "data/indoor/labelmap_indoor.prototxt"# MultiBoxLoss parameters.
num_classes = 2
share_location = True
background_label_id=0
train_on_diff_gt = True
normalization_mode = P.Loss.VALID
code_type = P.PriorBox.CENTER_SIZE
neg_pos_ratio = 3.
loc_weight = (neg_pos_ratio + 1.) / 4.
multibox_loss_param = {'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1,'conf_loss_type': P.MultiBoxLoss.SOFTMAX,'loc_weight': loc_weight,'num_classes': num_classes,'share_location': share_location,'match_type': P.MultiBoxLoss.PER_PREDICTION,'overlap_threshold': 0.5,'use_prior_for_matching': True,'background_label_id': background_label_id,'use_difficult_gt': train_on_diff_gt,'do_neg_mining': True,'neg_pos_ratio': neg_pos_ratio,'neg_overlap': 0.5,'code_type': code_type,}
loss_param = {'normalization': normalization_mode,}# parameters for generating priors.
# minimum dimension of input image
min_dim = 300
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# pool6 ==> 1 x 1
mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'pool6']
# in percent %
min_ratio = 20
max_ratio = 95
step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2)))
min_sizes = []
max_sizes = []
for ratio in xrange(min_ratio, max_ratio + 1, step):min_sizes.append(min_dim * ratio / 100.)max_sizes.append(min_dim * (ratio + step) / 100.)
min_sizes = [min_dim * 10 / 100.] + min_sizes
max_sizes = [[]] + max_sizes
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]]
# L2 normalize conv4_3.
normalizations = [20, -1, -1, -1, -1, -1]
# variance used to encode/decode prior bboxes.
if code_type == P.PriorBox.CENTER_SIZE:prior_variance = [0.1, 0.1, 0.2, 0.2]
else:prior_variance = [0.1]
flip = True
clip = True# Solver parameters.
# Defining which GPUs to use.
gpus = "0"
gpulist = gpus.split(",")
num_gpus = len(gpulist)# Divide the mini-batch to different GPUs.
batch_size = 4
accum_batch_size = 32
iter_size = accum_batch_size / batch_size
solver_mode = P.Solver.CPU
device_id = 0
batch_size_per_device = batch_size
if num_gpus > 0:batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus))iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus)))solver_mode = P.Solver.GPUdevice_id = int(gpulist[0])if normalization_mode == P.Loss.NONE:base_lr /= batch_size_per_device
elif normalization_mode == P.Loss.VALID:base_lr *= 25. / loc_weight
elif normalization_mode == P.Loss.FULL:# Roughly there are 2000 prior bboxes per image.# TODO(weiliu89): Estimate the exact # of priors.base_lr *= 2000.# Which layers to freeze (no backward) during training.
freeze_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2']# Evaluate on whole test set.
num_test_image = 800
test_batch_size = 1
test_iter = num_test_image / test_batch_sizesolver_param = {# Train parameters'base_lr': base_lr,'weight_decay': 0.0005,'lr_policy': "step",'stepsize': 40000,'gamma': 0.1,'momentum': 0.9,'iter_size': iter_size,'max_iter': 60000,'snapshot': 40000,'display': 10,'average_loss': 10,'type': "SGD",'solver_mode': solver_mode,'device_id': device_id,'debug_info': False,'snapshot_after_train': True,# Test parameters'test_iter': [test_iter],'test_interval': 10000,'eval_type': "detection",'ap_version': "11point",'test_initialization': False,}# parameters for generating detection output.
det_out_param = {'num_classes': num_classes,'share_location': share_location,'background_label_id': background_label_id,'nms_param': {'nms_threshold': 0.45, 'top_k': 400},'save_output_param': {'output_directory': output_result_dir,'output_name_prefix': "comp4_det_test_",'output_format': "VOC",'label_map_file': label_map_file,'name_size_file': name_size_file,'num_test_image': num_test_image,},'keep_top_k': 200,'confidence_threshold': 0.01,'code_type': code_type,}# parameters for evaluating detection results.
det_eval_param = {'num_classes': num_classes,'background_label_id': background_label_id,'overlap_threshold': 0.5,'evaluate_difficult_gt': False,'name_size_file': name_size_file,}### Hopefully you don't need to change the following ###
# Check file.
check_if_exist(train_data)
check_if_exist(test_data)
check_if_exist(label_map_file)
check_if_exist(pretrain_model)
make_if_not_exist(save_dir)
make_if_not_exist(job_dir)
make_if_not_exist(snapshot_dir)# Create train net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device,train=True, output_label=True, label_map_file=label_map_file,transform_param=train_transform_param, batch_sampler=batch_sampler)VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,dropout=False, freeze_layers=freeze_layers)AddExtraLayers(net, use_batchnorm)mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,aspect_ratios=aspect_ratios, normalizations=normalizations,num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,prior_variance=prior_variance, kernel_size=3, pad=1)# Create the MultiBoxLossLayer.
name = "mbox_loss"
mbox_layers.append(net.label)
net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param,loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')),propagate_down=[True, True, False, False])with open(train_net_file, 'w') as f:print('name: "{}_train"'.format(model_name), file=f)print(net.to_proto(), file=f)
shutil.copy(train_net_file, job_dir)# Create test net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size,train=False, output_label=True, label_map_file=label_map_file,transform_param=test_transform_param)VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,dropout=False, freeze_layers=freeze_layers)AddExtraLayers(net, use_batchnorm)mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,aspect_ratios=aspect_ratios, normalizations=normalizations,num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,prior_variance=prior_variance, kernel_size=3, pad=1)conf_name = "mbox_conf"
if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX:reshape_name = "{}_reshape".format(conf_name)net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes]))softmax_name = "{}_softmax".format(conf_name)net[softmax_name] = L.Softmax(net[reshape_name], axis=2)flatten_name = "{}_flatten".format(conf_name)net[flatten_name] = L.Flatten(net[softmax_name], axis=1)mbox_layers[1] = net[flatten_name]
elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC:sigmoid_name = "{}_sigmoid".format(conf_name)net[sigmoid_name] = L.Sigmoid(net[conf_name])mbox_layers[1] = net[sigmoid_name]net.detection_out = L.DetectionOutput(*mbox_layers,detection_output_param=det_out_param,include=dict(phase=caffe_pb2.Phase.Value('TEST')))
net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label,detection_evaluate_param=det_eval_param,include=dict(phase=caffe_pb2.Phase.Value('TEST')))with open(test_net_file, 'w') as f:print('name: "{}_test"'.format(model_name), file=f)print(net.to_proto(), file=f)
shutil.copy(test_net_file, job_dir)# Create deploy net.
# Remove the first and last layer from test net.
deploy_net = net
with open(deploy_net_file, 'w') as f:net_param = deploy_net.to_proto()# Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net.del net_param.layer[0]del net_param.layer[-1]net_param.name = '{}_deploy'.format(model_name)net_param.input.extend(['data'])net_param.input_shape.extend([caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])])print(net_param, file=f)
shutil.copy(deploy_net_file, job_dir)# Create solver.
solver = caffe_pb2.SolverParameter(train_net=train_net_file,test_net=[test_net_file],snapshot_prefix=snapshot_prefix,**solver_param)with open(solver_file, 'w') as f:print(solver, file=f)
shutil.copy(solver_file, job_dir)max_iter = 0
# Find most recent snapshot.
for file in os.listdir(snapshot_dir):if file.endswith(".solverstate"):basename = os.path.splitext(file)[0]iter = int(basename.split("{}_iter_".format(model_name))[1])if iter > max_iter:max_iter = itertrain_src_param = '--weights="{}" \\\n'.format(pretrain_model)
if resume_training:if max_iter > 0:train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter)if remove_old_models:# Remove any snapshots smaller than max_iter.for file in os.listdir(snapshot_dir):if file.endswith(".solverstate"):basename = os.path.splitext(file)[0]iter = int(basename.split("{}_iter_".format(model_name))[1])if max_iter > iter:os.remove("{}/{}".format(snapshot_dir, file))if file.endswith(".caffemodel"):basename = os.path.splitext(file)[0]iter = int(basename.split("{}_iter_".format(model_name))[1])if max_iter > iter:os.remove("{}/{}".format(snapshot_dir, file))# Create job file.
with open(job_file, 'w') as f:f.write('cd {}\n'.format(caffe_root))f.write('./build/tools/caffe train \\\n')f.write('--solver="{}" \\\n'.format(solver_file))f.write(train_src_param)if solver_param['solver_mode'] == P.Solver.GPU:f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name))else:f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name))# Copy the python script to job_dir.
py_file = os.path.abspath(__file__)
shutil.copy(py_file, job_dir)# Run the job.
os.chmod(job_file, stat.S_IRWXU)
if run_soon:subprocess.call(job_file, shell=True)
ssd_pascal_indoor.py
训练命令:
python examples/ssd/ssd_pascal_indoor.py

4 测试

SSD框架中提供了测试代码,有C++版本和python版本

 4.1 c++版本

编译完SSD后,C++版本的的可执行文件存放目录: .build_release/examples/ssd/ssd_detect.bin

测试命令  ./
.build_release/examples/ssd/ssd_detect.bin models/VGGNet/indoor/deploy.prototxt   models/VGGNet/indoor/VGG_VOC0712_SSD_300x300_iter_60000.caffemodel pictures.txt

其中
pictures.txt中保存的是待测试图片的list

 4.2 python版本

    python 版本的测试过程参见examples/detection.ipynb

 
参考:
 1
将数据集做成VOC2007格式用于Faster-RCNN训练
2
SSD的配置安装与测试






分类: Computer Vision,object Detection
好文要顶 关注我 收藏该文
machineLearning
关注 - 14
粉丝 - 5
+加关注
2
0
« 上一篇:object detect links
» 下一篇:神经网络向量化求反向传播梯度
posted @ 2016-08-17 16:36 machineLearning 阅读(4639) 评论(27) 编辑 收藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/510303.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

归并排序的实现-代码

#include<stdio.h> void merge_sort(int *a,int *b,int x,int y) { if(y-x>1) { int mx(y-x)/2;//中间点的坐标 int px,qm,ix; merge_sort(a,b,x,m); merge_sort(a,b,m,y); while(p<m||q<y) { if(q>y||(p<m&&a[p]<a[q])) b[i]…

SSD+caffe︱Single Shot MultiBox Detector 目标检测+fine-tuning(二)

承接上一篇SSD介绍&#xff1a;SSDcaffe︱Single Shot MultiBox Detector 目标检测&#xff08;一&#xff09; 如果自己要训练SSD模型呢&#xff0c;关键的就是LMDB格式生成&#xff0c;从官方教程weiliu89/caffe来看&#xff0c;寥寥几行code&#xff0c;但是前面的数据整理…

把图片存成视频 python

tips: 1.保存的图片大小一定要一样 2.图像做好是标准的视频格式大小 3.图片要和视频size一样大小 代码如下 # -*- coding:utf8 -*- import os import cv2 import numpy as np import cv2.cv as cv path /home/m/mycode/cv filelist os.listdir(path) total_num len(f…

sdut 双向队列(STL)

deque<ll>q;//定义一个双向队列q&#xff0c;类型为long long q.push_front(a);//将a从队首插入队列 q.push_back(a);//将a从队尾插入队列 q.pop_front();//队首弹掉一个元素 q.pop_back();//队尾弹出一个元素 aq.front();//返回队首元素 aq.back();//返回队尾元素 aq.si…

给文件重命名

# -*- coding:utf8 -*-import osclass BatchRename():批量重命名文件夹中的图片文件def __init__(self):self.path home/l/imagedef rename(self):filelist os.listdir(self.path)total_num len(filelist)i 0for item in filelist:if item.endswith(.jpg):src os.path.joi…

pip install scikit-image on windows 失败 解决方案

到官网下载包 http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-image 我们下载 scikit_image‑0.13.0‑cp35‑cp35m‑win_amd64.whl 也可到我的CNDS下载 安装时会出现一下错误 scikit_image-0.13.0-cp34-none-win_amd64.whl is not a supported wheel on this platform…

sdut 数据结构实验之排序三:bucket sort

一开始这种做法超时&#xff1a; #include<stdio.h>int b[5000000],a[5000000],n,ans; void merge_sort(int *a,int *b,int x,int y) {if(y-x>1){int mx(y-x)/2;//中间点的坐标int px,qm,ix;merge_sort(a,b,x,m);merge_sort(a,b,m,y);while(p<m||q<y){if(q>…

Caffe训练源码基本流程

苏的专栏 致力于学习计算机视觉、模式识别、机器学习、深度学习相关技术&#xff1a;&#xff1a;&#xff1a;&#xff1a;希望结识更多同道中人。 QQ&#xff1a;2816568984 微信&#xff1a;Suc1011 目录视图 摘要视图 订阅 【活动】2017 CSDN博客专栏评选 【评论送书】…

fatal error: GL/glew.h: 没有那个文件或目录

搜索libglew的版本 #apt-cache search glew libglew-dbg - OpenGL Extension Wrangler (debugging symbols) libglew-dev - OpenGL Extension Wrangler - development environment libglew1.13 - OpenGL Extension Wrangler - runtime environment libglewmx-dbg - OpenGL E…

运行cudasift

文件中有cmakelist.txt 运行命令 cmake . 就会生成makefile type: make 出现错误&#xff1a; /usr/bin/ld: 找不到 -lopencv_dep_cudart 在cmake 时候用一下指令&#xff1a; cmake -D CUDA_USE_STATIC_CUDA_RUNTIMEOFF . make的时候可能会出现以下错误 make[2]: …

电脑DNS修复

首先在dos窗口下输入以下命令&#xff1a; ipconfig/displaydns 可以看到当前的缓存的所有DNS记录&#xff1a; 然后&#xff1a; ipconfig/flushdns 刷新当前的DNS

数据结构实验之排序七:选课名单(卡内存的一道题。。坑)

RE。。。 带更正 #include<iostream> #include<algorithm> using namespace std; #include<cstdio> #include<cstring> struct people {char name[100];int sum_class;int cl[2005]; }a[40000],b[40000]; int cmp(people a,people b) {char t[100],l[…

/usr/bin/ld: 找不到 -lopencv_dep_cudart

make出现/usr/bin/ld: 找不到 -lopencv_dep_cudart错误时候 我们在cmake时候加上参数 cmake -D CUDA_USE_STATIC_CUDA_RUNTIMEOFF .

ubuntu16.04下安装opencv3.2版本

1、下载OpenCV的源码 OpenCV官网上有linux版本的源码包可以下载&#xff0c;不过最好是从git上下载&#xff0c;这样可以保证下载得到的是最新的代码&#xff1a;1 wget -O opencv.zip https://github.com/Itseez/opencv/archive/3.2.0.zip 2 unzip opencv.zip 2、编译安装…

数据结构实验之栈六:下一较大值(二)

#include <bits/stdc.h> #include <iostream> using namespace std; struct node {int data;int next;//记录下一个元素死亡值int pos;//用来记录每个元素的位置*/ } a[100001],val[100000]; int main() {int t;while(~scanf("%d",&t)){int l0;while…

双系统安装ubuntu后没有windows启动项

打开terminal&#xff0c;sudo update-grub 如果看到windows的选项的话&#xff0c;下次重启就有了

ubunut安装分区建议

如果50g安装ubuntu 分为4个区 / :根目录区相当于windows 的C盘 我建议分20G swap:交换空间我建议分2G boot:我建议分200M home:把剩下的都分给home目录。

strchr函数的用法

【FROM MSDN && 百科】 原型&#xff1a; char *strchr(const char *s,char c); #include<string.h> 查找字符串s中首次出现字符c的位置,返回首次出现c的位置的指针&#xff0c;如果s中不存在c则返回NULL。 //#define FIRST_DEMO #define SECOND_DEMO #ifdef F…

Cross-Scale Cost Aggregation for Stereo Matching

摘要&#xff1a; 人类处理立体通信跨越多个尺度。然而&#xff0c;这种生物灵感就是忽略了最先进的成本汇总方法密集的立体声通信。在本文中&#xff0c;一个通用的提出跨规模成本汇总框架允许成本汇总中的多尺度互动。我们首先从统一优化中重新构建成本汇总透视和显示不同的…

strchr与strstr函数

在C语言中 strchr 和 strstr函数都被包含在<string.h>头文件中&#xff0c;也就是要调用它们时要在程序前面包含<string.h>头文件&#xff0c;也就是写这个语句&#xff1a;#include<string.h> strchr函数原型&#xff1a;char * strchr(char * str, int ch)…