排序算法原理与实现(java)
Java程序员必知的8大排序 [来源:本站 | 日期:2012年12月24日 | 浏览173 次] 字体:[大 中 小] 8种排序之间的关系: 1, 直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数 也是排好顺序的。如此反复循环,直到全部排好顺序。 (2)实例 (3) 用java实现 //从小到大 1 package com.njue; 2 3 public class insertSort { 4 public insertSort(){ 5 inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 6 int temp=0; 7 for(int i=1;i=0j--){ //要插入的元素小于前面的元素 11 a[j+1]=a[j]; //将大于temp的值整体后移一个单位 12 } 13 a[j+1]=temp; //插入 14 } 15 for(int i=0;i=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,.,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。 (2)实例: 初始序列:46,79,56,38,40,84 建堆: 交换,从堆中