基于YOLOv8模型的五类动物目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的五类动物目标检测系统可用于日常生活中检测与定位动物目标(狼、鹿、猪、兔和浣熊),利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现动物目标(狼、鹿、猪、兔和浣熊)检测,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的动物数据集(狼、鹿、猪、兔和浣熊)手动标注了狼、鹿、猪、兔和浣熊这五个类别,数据集总计5423张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的动物检测识别数据集包含训练集4800张图片,验证集370张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的五类动物目标数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对五类动物目标数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50397.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI 绘画Stable Diffusion 研究(十四)SD 图生图+剪映制作人物说话视频

大家好,我是风雨无阻。 前一篇,我们详细介绍了使用 SadTlaker制作数字人视频案例,感兴趣的朋友请前往查看:AI 绘画Stable Diffusion 研究(十三)SD数字人制作工具SadTlaker使用教程。 对于没有安装 SadTlaker 插件的朋友…

CH583/2构建工程教程

CH583/2构建工程教程 绪论资源移植步骤准备移植步骤一步骤二 工程配置修改工程名修改前修改后 工程配置修改资源文件 修改C/C general修改C/C构建修改汇编交叉编译修改C交叉编译修改GNU RISC-V Cross Linker 修改跟编译 移植注意事项 绪论 资源 CH583/2的SDK下载 移植步骤 …

Java课题笔记~ 整合第三方技术

1. 整合JUnit 问题导入 回忆一下Spring整合JUnit的步骤&#xff1f; 1.1 Spring整合JUnit&#xff08;复习&#xff09; 1.2 SpringBoot整合JUnit 【第一步】添加整合junit起步依赖(可以直接勾选) <dependency><groupId>org.springframework.boot</groupId…

flutter对数组中某个数据二次加工成单独的数组

如何将数据[2,1,2,2,2,1,2,2,3,2,2,2,2,3,2,2,2,2,2,3,2,4,2,2,1,2,3,2,4,2]加工成 [[2], 1, [2, 2, 2], 1, [2, 2], 3, [2, 2, 2, 2], 3, [2, 2, 2, 2, 2], 3, [2], 4, [2, 2], 1, [2], 3, [2], 4, [2]]。这是实际工作中遇到的问题&#xff0c;UI要求将某一类型数据&#xff…

前端实习day30

今天又是一个繁忙的一天&#xff0c;加功能&#xff0c;改样式&#xff0c;改得头皮发麻&#xff0c;预定的任务还是没能完成&#xff0c;改起来真得太头疼&#xff0c;代码太乱了&#xff01;&#xff01;昨天那个bug&#xff0c;今天问了一下同事&#xff0c;不到五分钟就解决…

无涯教程-PHP - intval() 函数

PHP 7引入了一个新函数 intdiv()&#xff0c;该函数对其操作数执行整数除法并将该除法返回为int。 <?php$valueintdiv(10,3);var_dump($value);print(" ");print($value); ?> 它产生以下浏览器输出- int(3) 3 PHP - intval() 函数 - 无涯教程网无涯教程网…

Ubuntu Touch OTA-2 推出,支持 Fairphone 3 和 F(x)tec Pro1 X

导读UBports 基金会近日宣布为基于 Ubuntu 20.04 LTS (Focal Fossa) 的 Ubuntu Touch 移动操作系统发布并全面提供 OTA-2 软件更新。 Ubuntu Touch OTA-2 在首次 OTA 更新整整四个月后发布&#xff0c;支持新设备&#xff0c;包括 Fairphone 3、F(x)tec Pro1 X 和 Vollaphone X…

HarmonyOS开发第一步,熟知开发工具DevEco Studio

俗话说的好&#xff0c;工欲善其事&#xff0c;必先利其器&#xff0c;走进HarmonyOS第一步&#xff0c;开发工具必须先行&#xff0c;当然了&#xff0c;关于开发工具的使用&#xff0c;官网和其他的博客也有很多的讲解&#xff0c;但是并没有按照常用的功能进行概述&#xff…

C++信息学奥赛2049:【例5.19】字符串判等

这段代码的功能是比较两个输入的字符串是否相等&#xff08;忽略大小写和空格&#xff09;&#xff0c;并输出 “YES” 或 “NO”。 解析注释后的代码如下&#xff1a; #include<bits/stdc.h> using namespace std; int main() {string arr; // 定义字符串变量arr&…

solidity0.8.0的应用案例9:代理合约

代码由OpenZeppelin的Proxy合约简化而来。 代理模式 Solidity合约部署在链上之后,代码是不可变的(immutable)。这样既有优点,也有缺点: 优点:安全,用户知道会发生什么(大部分时候)。坏处:就算合约中存在bug,也不能修改或升级,只能部署新合约。但是新合约的地址与…

Keepalive+LVS群集部署

一、Keepalive概述 keepalived 软件起初是专为 LVS 负载均衡软件设计的&#xff0c;用来管理并监控 LVS集群中各个服务节点的状态&#xff0c;后来又加入了可以实现高可用的 VRRP 功能。因此&#xff0c;keepalived 除了能够管理 LVS集群外&#xff0c;还可以为其他服务&#…

内网安全:WMI协议与SMB协议横向移动

目录 网络拓扑图 网络环境说明 WMI协议 SMB协议 域内信息收集 WMI协议 - 横向移动 利用方式一&#xff1a;wmic命令 利用方式一&#xff1a;cscript 利用方式一&#xff1a;impacket SMB协议 - 横向移动 利用方式一&#xff1a;psexec 利用方式二&#xff1a;psexe…

Linux下的Shell编程——正则表达式入门(四)

前言&#xff1a; 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文本编辑器里&#xff0c;正则表达式通常被用来检索、替换那些符合某个模式的文本。 在Linux 中&#xff0c;grep&#xff0c;sed&#xff0c;awk 等文本处理工具都支持…

golang 协程的实现原理

核心概念 要理解协程的实现, 首先需要了解go中的三个非常重要的概念, 它们分别是G, M和P, 没有看过golang源代码的可能会对它们感到陌生, 这三项是协程最主要的组成部分, 它们在golang的源代码中无处不在. G (goroutine) G是goroutine的头文字, goroutine可以解释为受管理的…

MFC为控件添加背景图片

1、 添加选择Bitmap导入图片&#xff0c;图片文件最好放在项目res目录中&#xff0c;同时是BMP格式。上传后的图片在资源视图&#xff0c;命名为IDB_BITMAP_M_BACK。 2、在cpp的C***Dlg::OnPaint()函数下添加如下代码 void C***Dlg::OnPaint() {CPaintDC dc(this); // device…

科技项目验收检测报告获取有哪些注意事项,作用都有哪些?

验收测试报告 软件从研发到结束是一个很长的周期&#xff0c;对于软件想要完成上市或者是交付到用户手中之前我们还需要进行一次全面检测&#xff0c;也就是科技项目验收测试&#xff0c;此测试有着严格的要求&#xff0c;需要第三方软件测评机构来完成&#xff0c;并出具科技…

软件配置安装(破解)--- maven下载配置

检查环境是否已有 首先检查一下电脑里有无maven环境&#xff0c;有的话就不用安装了 查看path环境中没有maven&#xff0c;开始准备接下来的重头戏 下载maven 下载bin.zip版 解压mavenxxxbin.zip &#xff08;建议把解压的文件放在一个文件夹内&#xff0c;命名英文的env…

C++,类的特殊函数练习

设计一个Per类&#xff0c;类中包含私有成员:姓名、年龄、指针成员身高、体重&#xff0c;再设计一个Stu类&#xff0c;类中包含私有成员:成绩、Per类对象p1&#xff0c;设计这两个类的构造函数、析构函数和拷贝构造函数。 #include <iostream> using namespace std;cla…

无类别域间路由(Classless Inter-Domain Routing, CIDR):理解IP网络和子网划分(传统的IP地址类ABCDE:分类网络)

文章目录 无类别域间路由&#xff08;CIDR&#xff09;&#xff1a;理解IP网络和子网划分引言传统的IP地址类关于“IP地址的浪费” IP地址与CIDRIP地址概述网络号与主机号CIDR记法&#xff08;网络 网络地址/子网掩码&#xff09;网络和广播地址 CIDR的优势减少路由表项缓解IP…

PDF校对:追求文档的精准与完美

随着数字化时代的到来&#xff0c;PDF已经成为了多数机构和个人首选的文件格式&#xff0c;原因在于它的稳定性、跨平台特性以及统一的显示效果。但是&#xff0c;对于任何需要公开或正式发布的文档&#xff0c;确保其内容的准确性是至关重要的&#xff0c;这就是PDF校对显得尤…