前言
前段时间尝试使用深度学习来识别评测过程中的图片,以减少人力成本。目前是在深度学习框架Keras(后端使用TensorFlow)下搭建了一个CNN卷积神经网络模型,下面就如何搭建一个最简单的数字图像识别模型做下介绍。
模型的建立
(1) 卷积层(convolution layer):至于什么是卷积大家可以自己去找资料看看,这里重点讲讲Convolution2D()函数。根据keras官方文档描述,2D代表这是一个2维卷积,其功能为对2维输入进行滑窗卷积计算。我们的数字图像尺寸为28*28,拥有长、宽两维,所以在这里我们使用2维卷积函数计算卷积。所谓的滑窗计算,其实就是利用卷积核逐个像素、顺序进行计算,如下图:
上图选择了最简单的均值卷积核,3x3大小,我们用这个卷积核作为掩模对前面4x4大小的图像逐个像素作卷积运算。首先我们将卷积核中心对准图像第一个像素,在这里就是像素值为237的那个像素。卷积核覆盖的区域(掩模之称即由此来),其下所有像素取均值然后相加:
C(1) = 0 * 0.5 + 0 * 0.5 + 0 * 0.5 + 0 * 0.5 + 237 * 0.5 + 203 * 0.5 + 0 * 0.5 + 123 * 0.5 + 112 * 0.5
结果直接替换卷积核中心覆盖的像素值,接着是第二个像素、然后第三个,从左至右,由上到下……以此类推,卷积核逐个覆盖所有像素。整个操作过程就像一个滑动的窗口逐个滑过所有像素,最终生成一副尺寸相同但已经过卷积处理的图像。上图我们采用的是均值卷积核,实际效果就是将图像变模糊了。显然,卷积核覆盖图像边界像素时,会有部分区域越界,越界的部分我们以0填充,如上图。对于此种情况,还有一种处理方法,就是丢掉边界像素,从覆盖区域不越界的像素开始计算。像上图,如果采用丢掉边界像素的方法,3x3的卷积核就应该从第2行第2列的像素(值为112)开始,到第3行第3列结束,最终我们会得到一个2x2的图像。这种处理方式会丢掉图像的边界特征;而第一种方式则保留了图像的边界特征。在我们建立的模型中,卷积层采用哪种方式处理图像边界,卷积核尺寸有多大等参数都可以通过Convolution2D()函数来指定:
#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
model.add(Conv2D(4, (5, 5), border_mode='valid',input_shape=(1, 28, 28), data_format='channels_first'))
第一个卷积层包含4个卷积核,每个卷积核大小为5x5,border_mode值为“same”意味着我们采用保留边界特征的方式滑窗,而值“valid”则指定丢掉边界像素(数字图像边缘是没用的,所以用vaild)。根据keras开发文档的说明,当我们将卷积层作为网络的第一层时,我们还应指定input_shape参数,显式地告知输入数据的形状,对我们的程序来说,input_shape的值为(1, 28, 28),代表28x28的灰度图。
PS:“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是~/.keras/keras.json
中设置的值,若从未设置过,则为“channels_last”。
(2) 激活函数层:这里讲一下最简单的relu(Rectified Linear Units,修正线性单元)函数,它的数学形式如下:
ƒ(x) = max(0, x)
这个函数非常简单,其输出一目了然,小于0的输入,输出全部为0,大于0的则输入与输出相等。该函数的优点是收敛速度快,除了它,keras库还支持其它几种激活函数,如下:
softplus
softsign
tanh
sigmoid
hard_sigmoid
linear
它们的函数式、优缺点网络上有很多资料,大家自己去查。对于不同的需求,我们可以选择不同的激活函数,这也是模型训练可调整的一部分,运用之妙,存乎一心,请自忖之。另外再交代一句,其实激活函数层按照我们前文所讲,其属于人工神经元的一部分,所以我们亦可以在构造层对象时通过传递activation参数设置,如下:
model.add(Convolution2D(4, (5, 5), border_mode='valid',input_shape=(1, 28, 28), data_format='channels_first'))
model.add(Activation('tanh'))
#通过传递activation参数设置,与上两行代码的作用相同
model.add(Convolution2D(4, (5, 5), border_mode='valid',input_shape=(1, 28, 28), data_format='channels_first'), activation='tanh')
(3) 池化层(pooling layer):池化层存在的目的是缩小输入的特征图,简化网络计算复杂度;同时进行特征压缩,突出主要特征。我们通过调用MaxPooling2D()函数建立了池化层,这个函数采用了最大值池化法,这个方法选取覆盖区域的最大值作为区域主要特征组成新的缩小后的特征图:
显然,池化层与卷积层覆盖区域的方法不同,前者按照池化尺寸逐块覆盖特征图,卷积层则是逐个像素滑动覆盖。对于我们输入的28x28特征图来说,经过2x2池化后,图像变为14x14大小。
model.add(MaxPooling2D(pool_size=(2, 2)))
(4)Dropout层:随机断开一定百分比的输入神经元链接,以防止过拟合。那么什么是过拟合呢?一句话解释就是训练数据预测准确率很高,测试数据预测准确率很低,用图形表示就是拟合曲线较尖,不平滑。导致这种现象的原因是模型的参数很多,但训练样本太少,导致模型拟合过度。为了解决这个问题,Dropout层将有意识的随机减少模型参数,让模型变得简单,而越简单的模型越不容易产生过拟合。代码中Dropout()函数只有一个输入参数——指定抛弃比率,范围为0~1之间的浮点数,其实就是百分比。这个参数亦是一个可调参数,我们可以根据训练结果调整它以达到更好的模型成熟度。
#本样例没有使用到,详见官方文档
keras.layers.core.Dropout(rate, noise_shape=None, seed=None)
(5)Flatten层:截止到Flatten层之前,在网络中流动的数据还是多维的(对于我们的程序就是2维的),经过多次的卷积、池化、Dropout之后,到了这里就可以进入全连接层做最后的处理了。全连接层要求输入的数据必须是一维的,因此,我们必须把输入数据“压扁”成一维后才能进入全连接层,Flatten层的作用即在于此。该层的作用如此纯粹,因此反映到代码上我们看到它不需要任何输入参数。
(6)全连接层(dense layer):全连接层的作用就是用于分类或回归,对于我们来说就是分类。keras将全连接层定义为Dense层,其含义就是这里的神经元连接非常“稠密”。我们通过Dense()函数定义全连接层。这个函数的一个必填参数就是神经元个数,其实就是指定该层有多少个输出。在我们的代码中,第一个全连接层(#14 Dense层)指定了512个神经元,也就是保留了512个特征输出到下一层。这个参数可以根据实际训练情况进行调整,依然是没有可参考的调整标准,自调之。
#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
(7)分类层:全连接层最终的目的就是完成我们的分类要求:0到9,模型构建代码的最后两行完成此项工作:
#Softmax分类,输出是10类别
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))