【数据结构】实现栈和队列

目录

  • 一、栈
    • 1.栈的概念及结构
      • (1)栈的概念
      • (2)栈的结构
    • 2.栈的实现
      • (1)类型和函数的声明
      • (2)初始化栈
      • (3)销毁
      • (4)入栈
      • (5)出栈
      • (6)检查是否为空
      • (7)获取栈的元素个数
      • (8)获取栈顶元素
  • 二、栈的全部代码
    • 1.Stack.h
    • 2Stack.c
    • 3.Test.c
  • 三、队列
    • 1.队列的概念及结构
      • (1)队列的概念
      • (2)队列的结构
    • 2.队列的实现
      • (1)类型和函数的声明
      • (2)初始化队列
      • (3)销毁
      • (4)入队
      • (5)出队
      • (6)获取头部元素
      • (7)获取队尾元素
      • (8)获取元素个数
      • (9)检查是否为空
  • 四、队列的全部代码
    • 1.Queue.h
    • 2.Queue.c
    • 3.Test.c

一、栈

1.栈的概念及结构

(1)栈的概念

栈是一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶

(2)栈的结构

在这里插入图片描述

2.栈的实现

(1)类型和函数的声明

栈的结构与顺序表相同,也是用数组。因为栈的特点是出栈、入栈在同一位置,所以用数组尾插更方便。

typedef int STDataType;
typedef struct Stack
{STDataType* data;int top;int capacity;
}ST;
//初始化
void STInit(ST* ps);
//销毁
void STDestroy(ST* ps);
//入栈
void STPush(ST* ps, STDataType x);
//出栈
void STPop(ST* ps);
//检查是否为空
bool STEmpty(ST* ps);
//获取栈的元素个数
int STSize(ST* ps);
//获取栈顶元素
STDataType STTop(ST* ps);

(2)初始化栈

void STInit(ST* ps)
{assert(ps);ps->data = NULL;ps->capacity = 0;ps->top = 0;
}

(3)销毁

void STDestroy(ST* ps)
{assert(ps);free(ps->data);ps->data = NULL;ps->capacity = 0;ps->top = 0;
}

(4)入栈

void STPush(ST* ps, STDataType x)
{assert(ps);if (ps->top == ps->capacity){int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;STDataType* tmp = (STDataType*)realloc(ps->data, sizeof(STDataType) * newcapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}ps->data = tmp;ps->capacity = newcapacity;}ps->data[ps->top] = x;ps->top++;
}

(5)出栈

void STPop(ST* ps)
{assert(ps);assert(ps->top > 0);ps->top--;
}

(6)检查是否为空

bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}

(7)获取栈的元素个数

int STSize(ST* ps)
{assert(ps);return ps->top;
}

(8)获取栈顶元素

STDataType STTop(ST* ps)
{assert(ps);assert(ps->top > 0);return ps->data[ps->top - 1];
}

二、栈的全部代码

1.Stack.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
typedef int STDataType;
typedef struct Stack
{STDataType* data;int top;int capacity;
}ST;
//初始化
void STInit(ST* ps);
//销毁
void STDestroy(ST* ps);
//入栈
void STPush(ST* ps, STDataType x);
//出栈
void STPop(ST* ps);
//检查是否为空
bool STEmpty(ST* ps);
//获取栈的元素个数
int STSize(ST* ps);
//获取栈顶元素
STDataType STTop(ST* ps);

2Stack.c

#include "Stack.h"
//初始化
void STInit(ST* ps)
{assert(ps);ps->data = NULL;ps->capacity = 0;ps->top = 0;
}
//销毁
void STDestroy(ST* ps)
{assert(ps);free(ps->data);ps->data = NULL;ps->capacity = 0;ps->top = 0;
}
//入栈
void STPush(ST* ps, STDataType x)
{assert(ps);if (ps->top == ps->capacity){int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;STDataType* tmp = (STDataType*)realloc(ps->data, sizeof(STDataType) * newcapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}ps->data = tmp;ps->capacity = newcapacity;}ps->data[ps->top] = x;ps->top++;
}
//出栈
void STPop(ST* ps)
{assert(ps);assert(ps->top > 0);ps->top--;
}
//检查是否为空
bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}
//获取栈的元素个数
int STSize(ST* ps)
{assert(ps);return ps->top;
}
//获取栈顶元素
STDataType STTop(ST* ps)
{assert(ps);assert(ps->top > 0);return ps->data[ps->top - 1];
}

3.Test.c

#include "Stack.h"
void test()
{ST st;STInit(&st);STPush(&st, 1);STPush(&st, 2);STPush(&st, 3);STPush(&st, 4);STPush(&st, 5);while (!STEmpty(&st)){printf("%d ", STTop(&st));STPop(&st);}STDestroy(&st);
}
int main()
{test();return 0;
}

在这里插入图片描述

三、队列

1.队列的概念及结构

(1)队列的概念

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头

(2)队列的结构

在这里插入图片描述

2.队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。

(1)类型和函数的声明

队列除了节点的结构体以外,还要再创建一个结构体,方便找到尾指针。

typedef int QDataType;
typedef struct QueueNode
{QDataType data;struct QueueNode* next;
}QNode;
typedef struct Queue
{QNode* head;QNode* tail;int size;
}Que;
//初始化
void QueInit(Que* pq);
//销毁
void QueDestroy(Que* pq);
//入队
void QuePush(Que* pq, QDataType x);
//出队
void QuePop(Que* pq);
//获取头部元素
QDataType QueFront(Que* pq);
//获取队尾元素
QDataType QueBack(Que* pq);
//获取元素个数
int QueSize(Que* pq);
//检查是否为空
bool QueEmpty(Que* pq);

(2)初始化队列

void QueInit(Que* pq)
{assert(pq);pq->head = NULL;pq->tail = NULL;pq->size = 0;
}

(3)销毁

void QueDestroy(Que* pq)
{assert(pq);QNode* cur = pq->head;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0;
}

(4)入队

入队相当于尾插,因为只有一个入口插入节点,所以直接在这个函数创建一个新节点。分两种情况:刚开始没有节点尾插、已有节点再尾插。

void QuePush(Que* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;
}

(5)出队

出队相当于头删。如果没有节点,就不能再删了,所以要断言检查是否为空。这里的头删也要分两种情况:只有一个节点、一个以上的节点。

void QuePop(Que* pq)
{assert(pq);assert(!QueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;
}

(6)获取头部元素

QDataType QueFront(Que* pq)
{assert(pq);assert(!QueEmpty(pq));return pq->head->data;
}

(7)获取队尾元素

QDataType QueBack(Que* pq)
{assert(pq);assert(!QueEmpty(pq));return pq->tail->data;
}

(8)获取元素个数

int QueSize(Que* pq)
{assert(pq);return pq->size;
}

(9)检查是否为空

bool QueEmpty(Que* pq)
{assert(pq);return pq->head == NULL;
}

四、队列的全部代码

1.Queue.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
typedef int QDataType;
typedef struct QueueNode
{QDataType data;struct QueueNode* next;
}QNode;
typedef struct Queue
{QNode* head;QNode* tail;int size;
}Que;
//初始化
void QueInit(Que* pq);
//销毁
void QueDestroy(Que* pq);
//入队
void QuePush(Que* pq, QDataType x);
//出队
void QuePop(Que* pq);
//获取头部元素
QDataType QueFront(Que* pq);
//获取队尾元素
QDataType QueBack(Que* pq);
//获取元素个数
int QueSize(Que* pq);
//检查是否为空
bool QueEmpty(Que* pq);

2.Queue.c

#include "Queue.h"
//初始化
void QueInit(Que* pq)
{assert(pq);pq->head = NULL;pq->tail = NULL;pq->size = 0;
}
//销毁
void QueDestroy(Que* pq)
{assert(pq);QNode* cur = pq->head;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0;
}
//入队
void QuePush(Que* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;
}
//出队
void QuePop(Que* pq)
{assert(pq);assert(!QueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;
}
//获取头部元素
QDataType QueFront(Que* pq)
{assert(pq);assert(!QueEmpty(pq));return pq->head->data;
}
//获取队尾元素
QDataType QueBack(Que* pq)
{assert(pq);assert(!QueEmpty(pq));return pq->tail->data;
}
//获取元素个数
int QueSize(Que* pq)
{assert(pq);return pq->size;
}
//检查是否为空
bool QueEmpty(Que* pq)
{assert(pq);return pq->head == NULL;
}

3.Test.c

#include "Queue.h"
void test()
{Que q;QueInit(&q);QuePush(&q, 1);QuePush(&q, 2);QuePush(&q, 3);QuePush(&q, 4);QuePush(&q, 5);while (!QueEmpty(&q)){printf("%d ", QueFront(&q));QuePop(&q);}printf("\n");QueDestroy(&q);
}
int main()
{test();return 0;
}

在这里插入图片描述
在这里插入图片描述
感谢观看~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50121.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(未完成)【Spring专题】SringAOP底层原理解析——阶段三(AOP)

目录 前言前置知识代理范式Spring动态代理的实现 课程内容一、动态代理的实现1.1 Cglib动态代理1.2 JDK动态代理1.3 ProxyFactory&#xff1a;Spring对两种代理的封装 二、AOP基础知识2.1 AOP基础概念回顾2.2 SpringAOP实现方式的发展历程 三、底层源码解析3.1 概念回顾3.2 核心…

Hive字符串数组json类型取某字段再列转行

一、原始数据 acctcontent1232313[{"name":"张三","code":"上海浦东新区89492jfkdaj\r\n福建的卡"...},{"name":"狂徒","code":"select * from table where aa1\r\n and a12"...},{...}]...…

使用proxman对iOS真机进行抓包

1 打开手机的safari 输入地址 http://proxy.man/ssl 2 下载证书代开设置页面&#xff0c;安装证书 设置信任证书 打开手机设置 &#xff0c;点击通用 点击关于本机、 点击证书信任设置 打开信任设置开关 4 设置手机代理 查看需要设置的代理地址 打开界面 在手机中按…

音频4A算法导论

+我V hezkz17进数字音频系统研究开发交流答疑群(课题组) 一 音频4A算法是? 音频4A算法是指自动增益控制(Automatic Gain Control, AGC)、自动噪声抑制(Automatic Noise Suppression, ANS)和自动回声消除(Automatic Echo Cancellation, AEC),主动降噪ANC(Active Noi…

软考高级系统架构设计师系列论文第100篇:论软件的可维护性设计

软考高级系统架构设计师系列论文第100篇:论软件的可维护性设计 一、摘要二、正文三、总结一、摘要 2020年3月1日至12月20日,我参加了“数据安全访问平台”项目的开发,担任系统分析员的工作。该项目是某行业用户“数据中心二期”建设的主要内容,目标是:建立数据统一访问接口…

【Java 高阶】一文精通 Spring MVC - 转换器(五)

&#x1f449;博主介绍&#xff1a; 博主从事应用安全和大数据领域&#xff0c;有8年研发经验&#xff0c;5年面试官经验&#xff0c;Java技术专家&#xff0c;WEB架构师&#xff0c;阿里云专家博主&#xff0c;华为云云享专家&#xff0c;51CTO 专家博主 ⛪️ 个人社区&#x…

Ribbon:listOfServers

解释&#xff1a; 配置了address的地址,请求会走address&#xff0c;也就是http://127.0.0.1:8081&#xff0c;通常用户与别的后端服务进行联调设置为其本地服务的ip。 如果将address:注释掉。 会走后面的XXX.feign.default-server地址&#xff0c;这个地址通常可以配一个网关…

“深入解析JVM:理解Java虚拟机的工作原理和优化技巧“

标题&#xff1a;深入解析JVM&#xff1a;理解Java虚拟机的工作原理和优化技巧 摘要&#xff1a;本文将深入探讨Java虚拟机&#xff08;JVM&#xff09;的工作原理和优化技巧。我们将从JVM的基本结构开始&#xff0c;逐步介绍其工作原理&#xff0c;并提供一些实际示例代码&am…

解决v-if作用下popup弹框滑动效果消失的问题

问题描述 做需求的时候需要封装一个popup的组件&#xff0c;需求是页面进来的时候需要请求接口获取到popup的内容&#xff0c;然后进行展示弹框&#xff0c;但是这里就有一个问题&#xff0c;因为popup是一个组件&#xff0c;接口又是异步操作的&#xff0c;父组件进来的时候就…

【秋招基础】后端开发——笔面试常见题目

综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招算法的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于网上知识点进行的&#xff0c;每个代码参考热门博客和GPT3.5&#xff0…

python自动化入门之Python编写脚本实现自动化爬虫详解

想知道如何使用Python轻松高效地获取网络上的信息&#xff1f; 本篇文章将探索Python自动化爬虫&#xff0c;并展示如何编写实用的脚本。 1. 什么是Python爬虫&#xff1f; 爬虫顾名思义&#xff0c;就是像蜘蛛一样在网络上爬行&#xff0c;抓取各种有用信息的一种程序。而Pyt…

深入理解回调函数qsort:从入门到模拟实现

&#x1f341;博客主页&#xff1a;江池俊的博客 &#x1f4ab;收录专栏&#xff1a;C语言进阶之路 &#x1f4a1;代码仓库&#xff1a;江池俊的代码仓库 &#x1f3aa;我的社区&#xff1a;GeekHub &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐ 文章目录 前…

在树莓派上搭建web站点并发布互联网上线【无需公网IP】

文章目录 概述使用 Raspberry Pi Imager 安装 Raspberry Pi OS设置 Apache Web 服务器测试 web 站点安装静态样例站点将web站点发布到公网安装 Cpolar内网穿透cpolar进行token认证生成cpolar随机域名网址生成cpolar二级子域名将参数保存到cpolar配置文件中测试修改后配置文件配…

C/C++:C/C++在大数据时代的应用,以及C/C++程序员未来的发展路线

目录 1.C/C在大数据时代的应用 1.1&#xff1a;C/C数据处理 1.2&#xff1a;C/C数据库 1.3&#xff1a;C/C图像处理和计算机视觉 1.3.1&#xff1a;导读 2.C/C程序员未来的发展路线 2.1&#xff1a;图导 1.C/C在大数据时代的应用 C/C在大数据时代中仍然是一种被广泛应用的编…

小程序运营方式有哪些?如何构建小程序运营框架?

​如今&#xff0c;每个企业基本都做过至少一个小程序&#xff0c;但由于小程序本身不具备流量、也很少有自然流量&#xff0c;因此并不是每个企业都懂如何运营小程序。想了解小程序运营方式方法有哪些&#xff1f; 在正式运营小程序前&#xff0c;了解小程序的功能与企业实际经…

Webpack高频面试题

Webpack高频面试题 1 谈谈你对webpack的看法 现在的前端网页功能丰富&#xff0c;特别是SPA&#xff08;single page web application 单页应用&#xff09;技术流行后&#xff0c;JavaScript的复杂度增加和需要一大堆依赖包&#xff0c;还需要解决Scss&#xff0c;Less……新…

AS中回退git历史版本并删除历史提交记录

当您想把某个版本后的代码删除&#xff0c;回滚到指定的版本。可以使用一下的方法。 一、打开AS中git历史提交窗口 二、选择需要回滚的版本选项&#xff0c;右键弹出菜单。选择Reset Current Branch to Here... 三、选择 Hard 选项 soft&#xff1a;将合并的更改应用到当前分支…

【ARM】Day8 中断

1. 思维导图 2. 实验要求&#xff1a; 实现KEY1/LEY2/KE3三个按键&#xff0c;中断触发打印一句话&#xff0c;并且灯的状态取反 key1 ----> LED3灯状态取反 key2 ----> LED2灯状态取反 key3 ----> LED1灯状态取反 key3.h #ifndef __KEY3_H__ #define __KEY3_H__#in…

RCU安全引用计数

原文网址&#xff1a;https://lwn.net/Articles/93617 原文作者&#xff1a;Corbet 原文时间&#xff1a;2004年7月14日 内核提供了一种用于实现引用计数的简单机制kref&#xff1b;该机制是今年3月份完成的。kref机制的核心思想是&#xff0c;提供支持原子操作的计数器&…

CGAL 网格(Mesh)数据骨架提取

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 骨架是一种非常有效的形状抽象,其被广泛的用于分割、形状匹配、曲面重建、虚拟导航等领域。正如名称所示,一条曲线骨架本质上是曲线线性化的图结构,并且它不是由曲面(2D)组成的3D几何体的中轴线。 如下图所示,形…