2023国赛数学建模思路 - 案例:最短时间生产计划安排

文章目录

  • 0 赛题思路
  • 1 模型描述
  • 2 实例
    • 2.1 问题描述
    • 2.2 数学模型
      • 2.2.1 模型流程
          • 2.2.2 符号约定
          • 2.2.3 求解模型
    • 2.3 相关代码
    • 2.4 模型求解结果
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

最短时间生产计划模型

该模型出现在好几个竞赛赛题上,预测2023今年国赛也会与该模型相关。

1 模型描述

离散系统仿真在工业生产的工序安排中起到了相当重要的作用,如何就一些内部机制复杂的离散问题建立简单易行、可监测性强的数学模型一直是仿真技术的研究热点.

离散事件系统现有三种仿真建模策略,即:

  • 事件调度法
  • 活动扫描法
  • 进程交互法.

该模型demo学长采用了其中的活动扫描法对生产中的一个实际例子进行了处理.

活动扫描法对于各事件之间相关性很强的系统有着很好的适用性.

2 实例

2.1 问题描述

在许多工厂生产过程中,由于设备的数量、产品加工的次序限制,往往不能简单地安排生产任务.我们设想,应用强大的数学软件配合简单易行的方法进行安排.

设某重型机械厂产品都是单件性的,其中有一车间共有4种不同设备,现接受6件产品的加工任务,每件产品接受的程序在指定的设备上加工,其工序与加工周期如下表

在这里插入图片描述
现在我们根据这一实际问题,寻求安排的方法.

要求:

1、每件产品必须按规定的工序加工,不得颠倒.

2、每台设备在同一时间只能担任一项任务(每件产品的每个工序为一个任务).

3、在尽可能短的时间里,完成所接受的全部任务.

为了节省电能,合理分配生产任务,厂方还要求:

1、做出每件产品的每个工序开工、完工时间表.

2、给出每台设备承担任务的时间表.

2.2 数学模型

2.2.1 模型流程

在这里插入图片描述

2.2.2 符号约定

在这里插入图片描述

2.2.3 求解模型

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.3 相关代码

clear
clc
seq=[3 1 2 3 4 0 0 0                     %各产品加工时所用的设备的次序1 4 2 3 0 0 0 03 4 1 2 1 0 0 02 3 4 1 4 3 0 04 2 3 4 1 3 4 01 2 1 3 4 1 3 1];tim=[8 2 4 24 6 0 0 0                   %加工对应使用的时间4 5 3 4 0 0 0 03 7 15 20 8 0 0 07 6 21 1 16 3 0 010 4 8 4 12 6 1 01 4 7 3 5 2 5 8];
whole=[0 0 0 0];
for i=1:6for j=1:8if(seq(i,j)~=0)whole(seq(i,j))=whole(seq(i,j))+tim(i,j);endend
end
whole                          %生产各件产品所需的总时间mes=cell(4,1);                   %记录各个设备的工作时间(对应于上面tim的位置)
for k=1:4mes{k,1}=zeros(6,8);for j=1:8for i=1:6if(seq(i,j)==k)mes{k,1}(i,j)=tim(i,j);elsemes{k,1}(i,j)=100;endendend
endturn=cell(5,100);               %记录四个设备的开关时间及加工对象(on(i)for i=1:4for j=1:100turn{i,j}='off';end
end
for i=1:100turn{5,i}=[num2str(i) '分'];
endopen=zeros(6,8);           
%记录6个产品的加工进度,0表示未进行,1表示已开始(或已结束),2表示可选,3表示没有这个程序
for i=1:6open(i,1)=2;
end
for i=1:6for j=1:8if seq(i,j)==0open(i,j)=3;endend
endgongxu=zeros(6,1);
dai=zeros(4,1);
j=1;
s=[1	1	1	1	1	3	3	3
1	1	1	1	3	3	3	3
1	1	1	1	1	3	3	3
1	1	1	1	1	1	3	3
1	1	1	1	1	1	1	3
1	1	1	1	1	1	1	1];
while isequal(open,s)==0on=[];for i=1:4if turn{i,j}=='off'  
%在turn矩阵中逐列搜索,若设备处于关机状态,则作记录(可用)on=[on i];endendl1=length(on);for m=1:l1          %在整个生产计划中(对设备逐个)寻找能够选作操作的步骤[x,y]=find(open==2);l2=length(x);a=[x(1) y(1)];for k=1:l2   %对某个设备on(m),找出当前它能操作的步骤中耗时最小的一个if mes{on(m)}(a(1),a(2))>mes{on(m)}(x(k),y(k))a=[x(k) y(k)];endendif turn{on(m),j}=='off' & mes{on(m)}(a(1),a(2))~=100 
%若时间为100则意味着这个步骤不属于我们希望使用的那件设备while tim(a(1),a(2))>0turn{on(m),tim(a(1),a(2))+j-1}=a(1);tim(a(1),a(2))=tim(a(1),a(2))-1;endendendfor i=1:4if turn{i,j}~='off'dai(i)=turn{i,j};endendfor i=1:4if turn{i,j}~='off' & turn{i,j+1}=='off'gongxu(turn{i,j})=gongxu(turn{i,j})+1;open(turn{i,j},gongxu(turn{i,j}))=1;endif gongxu(dai(i))<8 & open(dai(i),gongxu(dai(i))+1)~=3 & turn{i,j+1}=='off'open(dai(i),gongxu(dai(i))+1)=2;endendj=j+1;
end

2.4 模型求解结果

每件产品的每个工序开工、完工时间表

在这里插入图片描述
每台设备承担任务的时间表

在这里插入图片描述
从结果中我们可以看到,使用这种方法,只需78个单位时间就可以完成所有的工序.而我们同时也可以在论文的开始部分看到,单就完成 就需耗费75个单位时间.可见这种方法得出的结果还是相当使人满意的,而且操作简单,可监测性强.

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50081.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

行业追踪,2023-08-23

自动复盘 2023-08-23 凡所有相&#xff0c;皆是虚妄。若见诸相非相&#xff0c;即见如来。 k 线图是最好的老师&#xff0c;每天持续发布板块的rps排名&#xff0c;追踪板块&#xff0c;板块来开仓&#xff0c;板块去清仓&#xff0c;丢弃自以为是的想法&#xff0c;板块去留让…

uview2.0自定义tabbar

tabbar组件 <template><u-tabbar :value"tab" change"changeTab" :fixed"true" :border"true" :placeholder"true":safeAreaInsetBottom"true"><u-tabbar-item text"消息" icon"c…

SpringBoot接收参数的8种方式

文章目录 1. 直接把请求参数写在方法的形参中2. 封装一个bean直接来接收3. 原生的HttpServletRequest接收4. PathVariable获取rest风格路径参数5. RequestParam绑定请求参数到方法形参6. RequestBody绑定请求参数到方法形参7. RequestHeader8. CookieValue 1. 直接把请求参数写…

C语言:整型提升

一、什么是整型提升 C语言的整型算术运算至少是以缺省整型类型的精度来进行的。 为了达到这个精度&#xff0c;算术运算表达式中的 字符型char 和 短整型short 需要被转换为普通整型&#xff0c;这种转换成为整型提升。 二、整型提升的意义 表达式的整型运算需要在CPU相应的运算…

华为数通方向HCIP-DataCom H12-821题库(单选题:41-60)

第41题 以下关于IS-IS协议说法错误的是? A、IS-IS协议支持CLNP网络 B、IS-IS 协议支持IP 网络 C、IS-IS 协议的报文直接由数据链路层封装 D、IS-IS协议是运行在AS之间的链路状态协议 答案&#xff1a;D 解析&#xff1a; 关于IS-IS协议的说法错误是D. IS-IS协议是运行在A…

Windows运行Spark所需的Hadoop安装

解压文件 复制bin目录 找到winutils-master文件hadoop对应的bin目录版本 全部复制替换掉hadoop的bin目录文件 复制hadoop.dll文件 将bin目录下的hadoop.dll文件复制到System32目录下 配置环境变量 修改hadoop-env.cmd配置文件 注意jdk装在非C盘则完全没问题&#xff0c;如果装在…

python中的matplotlib画折线图(数据分析与可视化)

先导包&#xff08;必须安装了numpy 、pandas 和matplotlib才能导包&#xff09;&#xff1a; import numpy as np import pandas as pd import matplotlib.pyplot as plt核心代码&#xff1a; import numpy as np import pandas as pd import matplotlib.pyplot as pltpd.se…

机器学习-使用 XGBoost 时间序列预测能源消耗

简而言之&#xff0c;时间序列预测是根据以前的历史数据预测未来值的过程。目前使用时间序列预测的最热门领域之一是加密货币市场&#xff0c;人们希望预测比特币或以太坊等流行加密货币的价格在未来几天甚至更长时间内将如何波动。另一个现实世界的案例是能源消耗预测。尤其是…

智能井盖传感器,物联网智能井盖系统

随着城市人口的不断增加和城市化进程的不断推进&#xff0c;城市基础设施的安全和可靠性变得愈发重要&#xff0c;城市窨井盖作为城市基础设施重要组成部分之一&#xff0c;其安全性事关城市安全有序运行和居民生产生活安全保障。 近年来&#xff0c;各地都在加强城市窨井盖治理…

【2023新教程】树莓派定时自动拍照并上传腾讯云对象存储COS

1 换源 仅适用于Release date: May 3rd 2023、Debian version: 11 (bullseye)这个树莓派OS版本&#xff0c;其他版本不保证有效。 首先使用如下命令&#xff0c;查看自己树莓派的架构。 uname -a结果如下&#xff1a; 如果红圈处显示为aarch64&#xff0c;使用命令sudo na…

【TypeScript】声明文件

在 TypeScript 中&#xff0c;声明文件&#xff08;Declaration Files&#xff09;用于描述已有 JavaScript 代码库的类型信息&#xff0c;以便在 TypeScript 项目中使用这些代码库时获得类型支持。 当你在 TypeScript 项目中引用外部 JavaScript 模块或库时&#xff0c;可能会…

设计模式之组合模式(Composite)的C++实现

1、组合模式的提出 在软件开发过程中&#xff0c;使用者Client过多依赖所操作对象内部的实现结构&#xff0c;如果对象内部的实现结构频繁发生变化&#xff0c;则使用者的代码结构将要频繁地修改&#xff0c;不利于代码地维护和扩展性&#xff1b;组合模式可以解决此类问题。组…

【IDEA配置创建类注释模板和方法模板教程】

IDEA配置创建类注释模板和方法模板教程 废话不多说直接上干货 废话不多说直接上干货 先看效果: 类: 方法: IDEA类注释模板 &#xff0c;配置步骤&#xff1b; 直接用模板: /*** description: ${description}* author: Lynn.OuYang* create: ${YEAR}-${MONTH}-${DAY} ${HOU…

期权分仓开户资金是否安全?具体保障措施有哪些?

网上关于期权分仓系统的真假一直都没有定论&#xff0c;两方人的争论也让很多没有接触过期权分仓系统的人摸不着头脑&#xff0c;那么期权分仓靠谱吗&#xff1f;资金在里面安全吗&#xff1f;下文为大家科普期权分仓开户资金是否安全?具体保障措施有哪些&#xff1f; 一、期权…

LLMs领域适应的预训练Pre-training for domain adaptation

到目前为止&#xff0c;我强调了在开发应用程序时&#xff0c;您通常会使用现有的LLM。这为您节省了大量时间&#xff0c;并可以更快地得到一个工作原型。 但是&#xff0c;有一种情况下&#xff0c;您可能会发现有必要从头开始预训练自己的模型。如果您的目标领域使用的词汇和…

开源容灾备份软件,开源cdp备份软件

数据的安全性和完整性面临着硬件问题、黑客攻击、人为错误等各种威胁。在这种环境下&#xff0c;开源容灾备份软件应运而生&#xff0c;通过提供自动数据备份和恢复&#xff0c;有效地保证了公司的数据安全。 一、开源容灾备份软件的定义和作用 开源容灾备份软件是一种基于开源…

Python Opencv实践 - 直方图显示

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像直方图计算 #cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate) #images&…

C语言刷题(16)

第一题 第二题 注意 Printf&#xff08;&#xff09;可以直接在里面放字符指针进行打印 第三题 第四题 第五题 第六题 第七题 或者

edge浏览器使用jupyter notebook删除快捷键没有用?

按快捷键删除没有用&#xff0c;出现一个黑色方框&#xff0c;里面的数字不断在加 解决方法&#xff1a; 在扩展中将Global Speed控制视频速度的插件关掉&#xff0c;或者将控制速度的快捷键改一下 可以在浏览器设置 》扩展 》管理扩展 里面关掉该插件 可以在Global Speed 的…

论文解读:Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

发布时间&#xff1a;2022.4.4 (2021发布&#xff0c;进过多次修订) 论文地址&#xff1a;https://arxiv.org/pdf/2112.08088.pdf 项目地址&#xff1a;https://github.com/wenyyu/Image-Adaptive-YOLO 虽然基于深度学习的目标检测方法在传统数据集上取得了很好的结果&#xf…