ECC椭圆曲线加密算法原理

       比特币使用椭圆曲线算法生成公钥和私钥,选择的是secp256k1曲线。与RSA(Ron Rivest,Adi Shamir,Len Adleman三位天才的名字)一样,ECC(Elliptic Curves Cryptography,椭圆曲线加密)也属于公开密钥算法。

一、从平行线谈起

 

  平行线,永不相交。没有人怀疑把:)不过到了近代这个结论遭到了质疑。平行线会不会在很远很远的地方相交了?事实上没有人见到过。所以“平行线,永不相交”只是假设(大家想想初中学习的平行公理,是没有证明的)。既然可以假设平行线永不相交,也可以假设平行线在很远很远的地方相交了。即平行线相交于无穷远点P∞(请大家闭上眼睛,想象一下那个无穷远点P∞,P∞是不是很虚幻,其实与其说数学锻炼人的抽象能力,还不如说是锻炼人的想象力)。给个图帮助理解一下:

  椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

 

  直线上出现P∞点,所带来的好处是所有的直线都相交了,且只有一个交点。这就把直线的平行与相交统一了。为与无穷远点相区别把原来平面上的点叫做平常点。

 

  以下是无穷远点的几个性质。

  ▲直线L上的无穷远点只能有一个。(从定义可直接得出)
  ▲平面上一组相互平行的直线有公共的无穷远点。(从定义可直接得出)
  ▲ 平面上任何相交的两直线L1,L2有不同的无穷远点。(否则L1和L2有公共的无穷远点P ,则L1和L2有两个交点A、P,故假设错误。)
  ▲平面上全体无穷远点构成一条无穷远直线。(自己想象一下这条直线吧)
  ▲平面上全体无穷远点与全体平常点构成射影平面。

 

二、射影平面坐标系

 

  射影平面坐标系是对普通平面直角坐标系(就是我们初中学到的那个笛卡儿平面直角坐标系)的扩展。我们知道普通平面直角坐标系没有为无穷远点设计坐标,不能表示无穷远点。为了表示无穷远点,产生了射影平面坐标系,当然射影平面坐标系同样能很好的表示旧有的平常点(数学也是“向下兼容”的)。

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

 

  我们对普通平面直角坐标系上的点A的坐标(x,y)做如下改造:
  令x=X/Z ,y=Y/Z(Z≠0);则A点可以表示为(X:Y:Z)。
  变成了有三个参量的坐标点,这就对平面上的点建立了一个新的坐标体系。

 

  例2.1:求点(1,2)在新的坐标体系下的坐标。
  
解:∵X/Z=1 ,Y/Z=2(Z≠0)∴X=Z,Y=2Z ∴坐标为(Z:2Z:Z),Z≠0。即(1:2:1)(2:4:2)(1.2:2.4:1.2)等形如(Z:2Z:Z),Z≠0的坐标,都是(1,2)在新的坐标体系下的坐标。

 

  我们也可以得到直线的方程aX+bY+cZ=0(想想为什么?提示:普通平面直角坐标系下直线一般方程是ax+by+c=0)。新的坐标体系能够表示无穷远点么?那要让我们先想想无穷远点在哪里。根据上一节的知识,我们知道无穷远点是两条平行直线的交点。那么,如何求两条直线的交点坐标?这是初中的知识,就是将两条直线对应的方程联立求解。平行直线的方程是:aX+bY+c1Z =0; aX+bY+c2Z =0  (c1≠c2);(为什么?提示:可以从斜率考虑,因为平行线斜率相同);

  将二方程联立,求解。有c2Z= c1Z= -(aX+bY),∵c1≠c2 ∴Z=0  ∴aX+bY=0;
  所以无穷远点就是这种形式(X:Y:0)表示。注意,平常点Z≠0,无穷远点Z=0,因此无穷远直线对应的方程是Z=0。

 

  例2.2:求平行线L1:X+2Y+3Z=0 与L2:X+2Y+Z=0 相交的无穷远点。
  解:因为L1∥L2 所以有Z=0, X+2Y=0;所以坐标为(-2Y:Y:0),Y≠0。即(-2:1:0)(-4:2:0)(-2.4:1.2:0)等形如(-2Y:Y:0),Y≠0的坐标,都表示这个无穷远点。

  看来这个新的坐标体系能够表示射影平面上所有的点,我们就把这个能够表示射影平面上所有点的坐标体系叫做射影平面坐标系。

 

三、椭圆曲线

 

  上一节,我们建立了射影平面坐标系,这一节我们将在这个坐标系下建立椭圆曲线方程。因为我们知道,坐标中的曲线是可以用方程来表示的(比如:单位圆方程是x2+y2=1)。椭圆曲线是曲线,自然椭圆曲线也有方程。

 

  椭圆曲线的定义:
  一条椭圆曲线是在射影平面上满足方程Y2Z+a1XYZ+a3YZ2=X3+a2X2Z+a4XZ2+a6Z3   ----------------[3-1]的所有点的集合,且曲线上的每个点都是非奇异(或光滑)的。

 

  定义详解:

  ▲ Y2Z+a1XYZ+a3YZ2 = X3+a2X2Z+a4XZ2+a6Z3是Weierstrass方程(维尔斯特拉斯,Karl Theodor Wilhelm Weierstrass,1815-1897),是一个齐次方程。

  ▲ 椭圆曲线的形状,并不是椭圆的。只是因为椭圆曲线的描述方程,类似于计算一个椭圆周长的方程(计算椭圆周长的方程,我没有见过,而对椭圆线积分(设密度为1)是求不出来的。谁知道这个方程,请告诉我呀^_^),故得名。

 

  我们来看看椭圆曲线是什么样的。

 椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记 

 

  ▲ 所谓“非奇异”或“光滑”的,在数学中是指曲线上任意一点的偏导数Fx(x,y,z),Fy(x,y,z),Fz(x,y,z)不能同时为0。如果你没有学过高等数学,可以这样理解这个词,即满足方程的任意一点都存在切线。

  下面两个方程都不是椭圆曲线,尽管他们是方程[3-1]的形式。

 椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记
 

  因为他们在(0:0:1)点处(即原点)没有切线。

 

  ▲椭圆曲线上有一个无穷远点O∞(0:1:0),因为这个点满足方程[3-1]。

  知道了椭圆曲线上的无穷远点。我们就可以把椭圆曲线放到普通平面直角坐标系上了。因为普通平面直角坐标系只比射影平面坐标系少无穷远点。我们在普通平面直角坐标系上,求出椭圆曲线上所有平常点组成的曲线方程,再加上无穷远点O∞(0:1:0),不就构成椭圆曲线了么?

  我们设x=X/Z ,y=Y/Z代入方程[3-1]得到:
  y2+a1xy+a3y = x3+a2x2+a4x+a6 -------------------------[3-2]

  也就是说满足方程[3-2]的光滑曲线加上一个无穷远点O∞,组成了椭圆曲线。为了方便运算,表述,以及理解,今后论述椭圆曲线将主要使用[3-2]的形式。

  由椭圆曲线的定义可以知道,椭圆曲线是光滑的,所以椭圆曲线上的平常点都有切线。而切线最重要的一个参数就是斜率k。

 

  例3.1:求椭圆曲线方程y2+a1xy+a3y=x3+a2x2+a4x+a6上,平常点A(x,y)的切线的斜率k。
  解:令F(x,y)= y2+a1xy+a3y-x3-a2x2-a4x-a6
         求偏导数
         Fx(x,y)= a1y-3x2-2a2x-a4
         Fy(x,y)= 2y+a1x +a3
         则导数为:f'(x)=- Fx(x,y)/ Fy(x,y)=-( a1y-3x2-2a2x-a4)/(2y+a1x +a3)
                 = (3x2+2a2x+a4-a1y) /(2y+a1x +a3)
         所以k=(3x2+2a2x+a4-a1y) /(2y+a1x +a3)  ------------------------[3-3]

  看不懂解题过程没有关系,记住结论[3-3]就可以了。


四、椭圆曲线上的加法

 

  上一节,我们已经看到了椭圆曲线的图象,但点与点之间好象没有什么联系。我们能不能建立一个类似于在实数轴上加法的运算法则呢?天才的数学家找到了这一运算法则。

 

  自从近世纪代数学引入了群、环、域的概念,使得代数运算达到了高度的统一。比如数学家总结了普通加法的主要特征,提出了加群(也叫交换群,或Abel(阿贝尔)群),在加群的眼中。实数的加法和椭圆曲线的上的加法没有什么区别。这也许就是数学抽象把:)。

 

  运算法则:任意取椭圆曲线上两点P、Q (若P、Q两点重合,则做P点的切线)做直线交于椭圆曲线的另一点R’,过R’做y轴的平行线交于R。我们规定P+Q=R。(如图)

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

 

  法则详解:
  ▲这里的+不是实数中普通的加法,而是从普通加法中抽象出来的加法,他具备普通加法的一些性质,但具体的运算法则显然与普通加法不同。

  ▲根据这个法则,可以知道椭圆曲线无穷远点O∞与椭圆曲线上一点P的连线交于P’,过P’作y轴的平行线交于P,所以有 无穷远点 O∞+ P = P 。这样,无穷远点 O∞的作用与普通加法中零的作用相当(0+2=2),我们把无穷远点 O∞ 称为 零元。同时我们把P’称为P的负元(简称,负P;记作,-P)。(参见下图)

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

  ▲根据这个法则,可以得到如下结论 :如果椭圆曲线上的三个点A、B、C,处于同一条直线上,那么他们的和等于零元,即A+B+C= O∞

  ▲k个相同的点P相加,我们记作kP。如下图:P+P+P = 2P+P = 3P。

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

 

  下面,我们利用P、Q点的坐标(x1,y1),(x2,y2),求出R=P+Q的坐标(x4,y4)。

 

  例4.1:求椭圆曲线方程y2+a1xy+a3y=x3+a2x2+a4x+a6上,平常点P(x1,y1),Q(x2,y2)的和R(x4,y4)的坐标。
  解:(1)先求点-R(x3,y3)
                   因为P,Q,-R三点共线,故设共线方程为y=kx+b,

其中 若P≠Q(P,Q两点不重合) 则直线斜率k=(y1-y2)/(x1-x2)
  
       若P=Q(P,Q两点重合) 则直线为椭圆曲线的切线,

        故由例3.1可知:

                   k=(3x2+2a2x+a4 -a1y) /(2y+a1x+a3)

                   因此P,Q,-R三点的坐标值就是方程组:
                   y2+a1xy+a3y=x3+a2x2+a4x+a6    -----------------[1] 
                   y=(kx+b)                     -----------------[2]
                        的解。

                  将[2],代入[1] 有
                  (kx+b)2+a1x(kx+b)+a3(kx+b) =x3+a2x2+a4x+a6    --------[3]
                  对[3]化为一般方程,根据三次方程根与系数关系(当三次项系数为1时;-x1x2x3 等于常数项系数, x1x2+x2x3+x3x1等于一次项系数,-(x1+x2+x3)等于二次项系数。)
                  所以-(x1+x2+x3)=a2-ka1-k2
                  x3=k2+ka1+a2+x1+x2;---------------------求出点-R的横坐标
                  因为k=(y1-y3)/(x1-x3) 故
                  y3=y1-k(x1-x3);-------------------------------求出点-R的纵坐标

       (2)利用-R求R
                 显然有 x4=x3= k2+ka1+a2+x1+x2; ------------求出点R的横坐标
                 而y3 y4 为 x=x4时 方程y2+a1xy+a3y=x3+a2x2+a4x+a6的解
                 化为一般方程y2+(a1x+a3)y-(x3+a2x2+a4x+a6)=0 , 根据二次方程根与系数关系得:
                 -(a1x+a3)=y3+y4
                故y4=-y3-(a1x+a3)=k(x1-x4)-y1-(a1x4+a3); ---------------求出点R的纵坐标
                即:
                x4=k2+ka1+a2+x1+x2;
                y4=k(x1-x4)-y1-a1x4-a3;

 

  本节的最后,提醒大家注意一点,以前提供的图像可能会给大家产生一种错觉,即椭圆曲线是关于x轴对称的。事实上,椭圆曲线并不一定关于x轴对称。如下图的y2-xy=x3+1

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

 

五、密码学中的椭圆曲线

 

  我们现在基本上对椭圆曲线有了初步的认识,这是值得高兴的。但请大家注意,前面学到的椭圆曲线是连续的,并不适合用于加密;所以,我们必须把椭圆曲线变成离散的点。

 

  让我们想一想,为什么椭圆曲线为什么连续?是因为椭圆曲线上点的坐标,是实数的(也就是说前面讲到的椭圆曲线是定义在实数域上的),实数是连续的,导致了曲线的连续。因此,我们要把椭圆曲线定义在有限域上(顾名思义,有限域是一种只有由有限个元素组成的域)。

 

  域的概念是从我们的有理数,实数的运算中抽象出来的,严格的定义请参考近世代数方面的数。简单的说,域中的元素同有理数一样,有自己得加法、乘法、除法、单位元(1),零元(0),并满足交换率、分配率。

 

  下面,我们给出一个有限域Fp,这个域只有有限个元素。
   
  Fp中只有p(p为素数)个元素0,1,2 …… p-2,p-1;
  Fp 的加法(a+b)法则是 a+b≡c (mod p);
  Fp 的乘法(a×b)法则是  a×b≡c (mod p);
  Fp 的除法(a÷b)法则是  a/b≡c (mod p);即 a×b-1≡c  (mod p);(b-1也是一个0到p-1之间的整数,但满足b×b-1≡1 (mod p)。
  Fp 的单位元是1,零元是 0。

  同时,并不是所有的椭圆曲线都适合加密。y2=x3+ax+b是一类可以用来加密的椭圆曲线,也是最为简单的一类。下面我们就把y2=x3+ax+b 这条曲线定义在Fp上:

  选择两个满足下列条件的小于p(p为素数)的非负整数a、b
  4a3+27b2≠0 (mod p)
  则满足下列方程的所有点(x,y),再加上 无穷远点O∞ ,构成一条椭圆曲线。
  y2=x3+ax+b  (mod p)
  其中 x,y属于0到p-1间的整数,并将这条椭圆曲线记为Ep(a,b)。

  我们看一下y2=x3+x+1  (mod 23)的图像

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

  是不是觉得不可思议?椭圆曲线,怎么变成了这般模样,成了一个一个离散的点?


  椭圆曲线在不同的数域中会呈现出不同的样子,但其本质仍是一条椭圆曲线。举一个不太恰当的例子,好比是水,在常温下,是液体;到了零下,水就变成冰,成了固体;而温度上升到一百度,水又变成了水蒸气。但其本质仍是H2O。

 

  Fp上的椭圆曲线同样有加法,但已经不能给以几何意义的解释。不过,加法法则和实数域上的差不多,请读者自行对比。

  1. 无穷远点 O∞是零元,有O∞+ O∞= O∞,O∞+P=P
  2. P(x,y)的负元是 (x,-y),有P+(-P)= O∞
  3. P(x1,y1),Q(x2,y2)的和R(x3,y3) 有如下关系:
  x3≡k2-x1-x2(mod p) 
  y3≡k(x1-x3)-y1(mod p)
  其中若P=Q 则 k=(3x2+a)/2y1  若P≠Q,则k=(y2-y1)/(x2-x1)

 

  例5.1 已知E23(1,1)上两点P(3,10),Q(9,7),求1)-P,2)P+Q,3) 2P。
  解 1)  –P的值为(3,-10)
    2)  k=(7-10)/(9-3)=-1/2,2的乘法逆元为12 因为2*12≡1 (mod 23)
        k≡-1*12 (mod 23) 故 k=11。
     x=112-3-9=109≡17 (mod 23);
     y=11[3-(-6)]-10=89≡20 (mod 23)
     故P+Q的坐标为(17,20)
    3)  k=[3(32)+1]/(2*10)=1/4≡6 (mod 23)
     x=62-3-3=30≡20 (mod 23)
     y=6(3-7)-10=-34≡12 (mod 23)
     故2P的坐标为(7,12)
     
  最后,我们讲一下椭圆曲线上的点的阶。
  如果椭圆曲线上一点P,存在最小的正整数n,使得数乘nP=O∞,则将n称为P的 阶,若n不存在,我们说P是无限阶的。事实上,在有限域上定义的椭圆曲线上所有的点的阶n都是存在的(证明,请参考近世代数方面的书)


六、椭圆曲线上简单的加密/解密

 

  公开密钥算法总是要基于一个数学上的难题。比如RSA 依据的是:给定两个素数p、q 很容易相乘得到n,而对n进行因式分解却相对困难。那椭圆曲线上有什么难题呢?

 

  考虑如下等式:
  K=kG  [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]
  不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。
  这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k< p style="word-wrap: break-word;" >

 

  现在我们描述一个利用椭圆曲线进行加密通信的过程:

  1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。
  2、用户A选择一个私有密钥k,并生成公开密钥K=kG。
  3、用户A将Ep(a,b)和点K,G传给用户B。
  4、用户B接到信息后 ,将待传输的明文编码到Ep(a,b)上一点M(编码方法很多,这里不作讨论),并产生一个随机整数r(r
  5、用户B计算点C1=M+rK;C2=rG。
  6、用户B将C1、C2传给用户A。
  7、用户A接到信息后,计算C1-kC2,结果就是点M。
             
因为C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M 再对点M进行解码就可以得到明文。

 

  在这个加密通信中,如果有一个偷窥者H ,他只能看到Ep(a,b)、K、G、C1、C2 而通过K、G 求k 或通过C2、G求r 都是相对困难的。因此,H无法得到A、B间传送的明文信息。

椭圆曲线加密(ECC) - 梁敬承 - 梁敬承技术笔记

 

  密码学中,描述一条Fp上的椭圆曲线,常用到六个参量:
       T=(p,a,b,G,n,h)。
  (p 、a 、b 用来确定一条椭圆曲线,G为基点,n为点G的阶,h 是椭圆曲线上所有点的个数m与n相除的整数部分)

  这几个参量取值的选择,直接影响了加密的安全性。参量值一般要求满足以下几个条件:

  1、p 当然越大越安全,但越大,计算速度会变慢,200位左右可以满足一般安全要求;
  2、p≠n×h;
  3、pt≠1 (mod n),1≤t<20;
  4、4a3+27b2≠0 (mod p);
  5、n 为素数;
  6、h≤4。

 

七、椭圆曲线在软件注册保护的应用

 

  我们知道将公开密钥算法作为软件注册算法的好处是Cracker很难通过跟踪验证算法得到注册机。下面,将简介一种利用Fp(a,b)椭圆曲线进行软件注册的方法。

 

  软件作者按如下方法制作注册机(也可称为签名过程)

  1、选择一条椭圆曲线Ep(a,b),和基点G;
  2、选择私有密钥k(k  

       3、产生一个随机整数r(r  4、将用户名和点R的坐标值x,y作为参数,计算SHA(Secure Hash Algorithm 安全散列算法,类似于MD5)值,即Hash=SHA(username,x,y);
  5、计算sn≡r - Hash * k (mod n)
  6、将sn和Hash作为 用户名username的序列号

 

  软件验证过程如下:(软件中存有椭圆曲线Ep(a,b),和基点G,公开密钥K)

  1、从用户输入的序列号中,提取sn以及Hash;
  2、计算点R≡sn*G+Hash*K ( mod p ),

             如果sn、Hash正确,其值等于软件作者签名过程中点R(x,y)的坐标,

             因为 sn≡r-Hash*k (mod n)
     所以 sn*G + Hash*K
             =(r-Hash*k)*G+Hash*K
             =rG-Hash*kG+Hash*K
             =rG- Hash*K+ Hash*K
             =rG=R ;
  3、将用户名和点R的坐标值x,y作为参数,计算H=SHA(username,x,y);
  4、如果H=Hash 则注册成功。如果H≠Hash ,则注册失败(为什么?提示注意点R与Hash的关联性)。

 

  简单对比一下两个过程:
  作者签名用到了:椭圆曲线Ep(a,b),基点G,私有密钥k,及随机数r。
  软件验证用到了:椭圆曲线Ep(a,b),基点G,公开密钥K。
  Cracker要想制作注册机,只能通过软件中的Ep(a,b),点G,公开密钥K ,并利用K=kG这个关系获得k后,才可以。而求k是很困难的。

 

主要参考文献

  张禾瑞,《近世代数基础》,高等教育出版社,1978
  闵嗣鹤 严士健,《初等数论》,高等教育出版社,1982
  段云所,《网络信息安全》第三讲,北大计算机系
  Michael Rosing ,chapter5《Implementing Elliptic Curve Cryptography》,Softbound,1998
  《SEC 1: Elliptic Curve Cryptography》,Certicom Corp.,2000
  《IEEE P1363a / D9》,2001

 

转自:http://8btc.com/article-138-1.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/499968.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql报错 DuplicateKeyException分析与解决

在做数据库同步的时候,发现一个错误,mysql报错如下: org.springframework.dao.DuplicateKeyException: ### Error updating database. Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException:XXX ### The error may involve com.jd.medicine.b2…

[运维]---linux机器一般监控用到的概念记录

发布在linux上的机器,一般我们需要监测各项数据来证实服务器是没问题的, 如果出现问题,我们也可以通过以下指标找到问题的方向 容器指标硬件指标磁盘指标系统指标网络指标 容器指标 线程数 -当前容器内线程总数&#xff08;平均到每个核的线程数&#xff09;进程数 -当前容器…

SHA算法原理

一、SHA1算法简介 安全哈希算法&#xff08;Secure Hash Algorithm&#xff09;主要适用于数字签名标准&#xff08;Digital Signature Standard DSS&#xff09;里面定义的数字签名算法&#xff08;Digital Signature Algorithm DSA&#xff09;。对于长度小于2^64位的消息&am…

[数据库]---mysql 插入sql之 INSERT INTO和INSERT IGNORE INTO和REPLACE INTO和ON DUPLICATE KEY UPDATE比较应用

mysql插入一条数据方式有四种,接下来逐个说明验证: 前提: 有一个表,作为本次测试: CREATE TABLE zs_test (id int(11) NOT NULL AUTO_INCREMENT,order_id int(11) DEFAULT NULL,name varchar(255) DEFAULT NULL,PRIMARY KEY (id),UNIQUE KEY order_id_index (order_id) ) EN…

DES加密算法原理

一、DES算法理论 本世纪五十年代以来&#xff0c;密码学研究领域出现了最具代表性的两大成就。其中之一就是1971年美国学者塔奇曼 &#xff08;Tuchman&#xff09;和麦耶&#xff08;Meyer&#xff09;根据信息论创始人香农&#xff08;Shannon&#xff09;提出的「多重加密有…

[python]---从java到python(01)---基础与入门上手

前言 我本是java派的,已经有几年了,直接也接触过其他语言,比如从最早的汇编语言到高级语言始祖的C; 但是近来越发觉得python很火,现在以我的视角开始写入门python基础,算是入坑了; 我的计划是这个系列要更契合那些有java基础的同胞们,用你们已有的java基础,用对比的方式,更快的…

AES加密算法原理

一、摘要 AES&#xff08;The Advanced Encryption Standard&#xff09;是美国国家标准与技术研究所用于加密电子数据的规范&#xff0c;在2002年5月26日建立。它被预期能成为人们公认的加密包括金融、电信和政府数字信息的方法。AES 是一个新的可以用于保护电子数据的加密算法…

java获取本机ipv4,并使用Google Guava 缓存

java写个util,获取本机ip,并使用Google Guava 缓存起来 四个方法: 获取本机ipv4ip转16进制16进制转ip校验ip 首先,Google Guava使用的maven配置 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version&g…

OpenSSL库概述

一、背景技术SSL是Secure Sockets Layer&#xff08;安全套接层协议&#xff09;的缩写&#xff0c;可以在Internet上提供秘密性传输。Netscape公司在推出第一个Web浏览器的同时&#xff0c;提出了SSL协议标准。其目标是保证两个应用间通信的保密性和可靠性,可在服务器端和用户…

短信微信等消息发送系统的架构设计

消息发送系统 项目中的一种做法,简化总结如下 1.对外暴露接口1,供业务方调用 2.接口2的实现就是同步发送各种消息,比如发短信,发微信等,但不保证 3.对外暴露接口2,供业务方调用 4.接口2内部实现,也是发送消息,但是是通过mq解耦的 4.1.业务方调用接口2后,接口2的实现将会发送一…

大数运算库简介

一、技术背景在网络安全技术领域中各种加密解密算法的软件实现上始终有一个共同的问题就是如何在普通的 PC 机上实现大数的运算。我们日常生活中所应用的 PC 机内部字长多是32 位或 64 位&#xff0c;但是在各种加密解密的算法中为了达到一定的安全强度&#xff0c;都是要求在1…

内存溢出,频繁full gc 处理思路

内存溢出,频繁full gc 处理思路 1.导出整个JVM 中内存信息 jmap -dump:formatb,file文件名 [pid] 2.分析dump文件的两种方式: 2.1. jdk安装目录下,bin目录下,jvisualvm.exe双击打开 文件–装入–选择dump出来的文件 就可以开始分析了2.2. 使用eclipse,安装插件mat(MemoryAn…

Base64编码解码原理

一. Base64编码由来 为什么会有Base64编码呢&#xff1f;因为有些网络传送渠道并不支持所有的字节&#xff0c;例如传统的邮件只支持可见字符的传送&#xff0c;像ASCII码的控制字符就不能通过邮件传送。这样用途就受到了很大的限制&#xff0c;比如图片二进制流的每个字节不可…

eclipse mat 打开dump文件,明明大小1G,打开后却只有不到100M.其他的去哪了

eclipse mat 打开dump文件,明明大小1G,打开后却只有不到100M.其他的去哪了 Used heap dump 显示的大小远小于dump文件大小 解决: window-->Preferences-->memory Analuzer-->勾选keep unreachable objects-->apply and close

MVP模式介绍

一、概述MVP 是从经典的模式MVC演变而来&#xff0c;它们的基本思想有相通的地方&#xff1a;Controller/Presenter负责逻辑的处理&#xff0c;Model提供数据&#xff0c;View负责显示。二、MVC和MVP的区别作为一种新的模式&#xff0c;MVP与MVC有着一个重大的区别&#xff1a;…

eclipse mat 分析dump文件,打开文件报错,out of memeory

eclipse mat 分析dump文件,打开文件报错,out of memeory 解决: 1.打开eclipse报out of memeory通用 window-->Preferences-->java-->installed JREs-->选中-->edit--> 在default VM arguments栏中加入:-server -Xms4096m -Xmx4096m -XX:PermSize512m -XX:M…

VIPER模式介绍

一、概述VIPER模式的理念不属于MV(X)系类&#xff0c;其理念来自于建筑设计。建筑领域流行这样一句话&#xff0c;“我们虽然在营造建筑&#xff0c;但建筑也会重新塑造我们”。正如所有开发者最终领悟到的&#xff0c;这句话同样适用于构建软件。编写代码中至关重要的是&#…

mysql索引(b+tree)小记

索引:快速检索的数据结构,缺点是插入时要创建索引树,所以索引不能太多 1.hash O(1) 时间复杂度低 有冲突,不支持范围查询,不支持排序 2.二叉树BST 平衡树:O(logn) 缺点:当树不平衡时,相对于没有索引 3.红黑数 相对二叉树,相对平衡 插入逐渐增大时,也会有右倾,也不是很平衡…

强制消除Xcode警告的方法

比如我已经知道某行会报警告了&#xff0c;但是代码有这么写的道理&#xff0c;实在不想看到警告&#xff0c;可以用下面这个宏把这几行代码包住&#xff0c;就可以消除警告了。#pragma clang diagnostic push#pragma clang diagnostic ignored "-Wunused-variable"/…

springMVC 源码级别总结原理,DispatcherServlet核心方法

前言 springMVC自我总结 本次maven: <!-- https://mvnrepository.com/artifact/org.springframework/spring-webmvc --><dependency><groupId>org.springframework</groupId><artifactId>spring-webmvc</artifactId><version>4.3.…