多变量线性回归

目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,…,xn)

增添更多特征后,我们引入一系列新的注释:
n 代表特征的数量
x(i)代表第 i 个训练实例,是特征矩阵中的第 i 行,是一个向量(vector)。
xij 代表特征矩阵中第 i 行的第 j 个特征,也就是第 i 个训练实例的第 j 个特征。

支持多变量的假设 h 表示为:h(x)=θ0+θ1x1+θ2x2...θnxn

这个公式中有 n+1 个参数和 n 个变量,为了使得公式能够简化一些,引入 x0=1,则公式
转化为:h(x)=ΘTX

多变量梯度下降

与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价 函数是所有建模误差的平方和,即:

j(θ0,θ1...θn)=12mi=1m(hθ(x(i))y(i))2

其中: hθ(x)=ΘTX=θ0x0+θ1x1+....θnxn

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。
多变量线性回归的批量梯度下降算法为:

梯度下降法实践 1-特征缩放

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯 度下降算法更快地收敛。
以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0- 2000 平方英尺,而房间数量的值则是 0-5,以两个参数分别为横纵坐标,绘制代价函数的等 高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1 到 1 之间。

xn=xnunsn

其中 un表示平均值, sn表示标准差

梯度下降法实践 2-学习率
梯度下降算法收敛所需要的迭代次数根据模型的不同而不同,我们不能提前预知,我们 可以绘制迭代次数和代价函数的图表来观测算法在何时趋于收敛。

也有一些自动测试是否收敛的方法,例如将代价函数的变化值与某个阀值(例如 0.001) 进行比较,但通常看上面这样的图表更好。
梯度下降算法的每次迭代受到学习率的影响,如果学习率 α 过小,则达到收敛所需的迭 代次数会非常高;如果学习率 α 过大,每次迭代可能不会减小代价函数,可能会越过局部最 小值导致无法收敛。

通常可以考虑尝试些学习率: α=0.01,0.03,0.1,0.3,1,3,10

特征和多项式回归

注:如果我们采用多项式回归模型,在运行梯度下降算法前,特征缩放非常有必要。

正规方程

正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: σσθjJ(θj)=0

假设我们的训练集特征矩阵为 X(包含了 x0=1)并且我们的训练集结果为向量 y,则利用正规方程解出的向量为

Θ=(XTX)1XTy

注:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺
寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是 不能用的。

梯度下降与正规方程的比较:

总结一下,只要特征变量的数目并不大,标准方程是一个很好的计算参数 θ 的替代方 法。具体地说,只要特征变量数量小于一万,我通常使用标准方程法,而不使用梯度下降法。
随着我们要讲的学习算法越来越复杂,例如,当我们讲到分类算法,像逻辑回归算法,
我们会看到, 实际上对于那些算法,并不能使用标准方程法。对于那些更复杂的学习算法,
我们将不得不仍然使用梯度下降法。因此,梯度下降法是一个非常有用的算法,可以用在有大量特征变量的线性回归问题

正规方程及不可逆性

有些同学曾经问过我,当计算 θ=inv(X’X ) X’y ,那对于矩阵 X’X 的结果是不可逆的情况 咋办呢?
如果你懂一点线性代数的知识,你或许会知道,有些矩阵可逆,而有些矩阵不可逆。我 们称那些不可逆矩阵为奇异或退化矩阵。

问题的重点在于 X’X 的不可逆的问题很少发生,在 Octave 里,如果你用它来实现 θ 的 计算,你将会得到一个正常的解。在 Octave 里,有两个函数可以求解矩阵的逆,一个被称 为 pinv(),另一个是 inv(),这两者之间的差异是些许计算过程上的,一个是所谓的伪逆,另 一个被称为逆。使用 pinv() 函数可以展现数学上的过程,这将计算出 θ 的值,即便矩阵 X’X 是不可逆的。

在 pinv() 和 inv() 之间,又有哪些具体区别呢 ?
其中 inv() 引入了先进的数值计算的概念。例如,在预测住房价格时,如果 x1 是以英尺 为尺寸规格计算的房子,x2 是以平方米为尺寸规格计算的房子,同时,你也知道 1 米等于 3.28 英尺 ( 四舍五入到两位小数 ),这样,你的这两个特征值将始终满足约束:x1=x2* (3.28)2。

实际上,你可以用这样的一个线性方程,来展示那两个相关联的特征值,矩阵 X’X 将是 不可逆的。

第二个原因是,在你想用大量的特征值,尝试实践你的学习算法的时候,可能会导致矩 阵 X’X 的结果是不可逆的。
具体地说,在 m 小于或等于 n 的时候,例如,有 m 等于 10 个的训练样本也有 n 等于
100 的特征数量。

总之,出现不可逆矩阵的情况极少发生,所以 在大多数实现线性回归中,出现不可逆的问题不应该过多的关注 XTX 是不可逆的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493875.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能乌托邦 迪拜认为2071年人类应该这样生活!

来源:网易智能不同于硅谷老牌的科技力量,迪拜一直是独特的存在。他们日益崛起的科技实力正在被验证,无论是全面AI化的基础建设和城市治安力量,还是频频登上全球科技头条的机器人警察和空中出租车,迪拜试图摆脱很多人眼…

逻辑回归与正则化

在分类问题中,你要预测的变量 y 是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。 在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问 题的例子有:判断一封电子邮件是否是垃圾邮件;判…

万字报告!一文看懂全球车厂的技术家底模块化平台

来源:智东西摘要:介绍模块化平台以及该平台对车企的重要意义,详解车企模块化平台布局。汽车的研发制造方式经历了手工作坊式到标准化流水线再到平台化,目前主流车企纷纷采取模块化平台方式。汽车模块化平台研发制造是指车企基于通…

西湖大学全披露:68位顶级科学家加盟,已获捐资35亿,最小捐赠者12岁

来源:量子位最终,2018年10月20日,成为了西湖大学的成立日。在刚结束的成立大会上,5名诺贝尔奖得主、70余位国内外校长及代表、近百位捐赠人齐聚。可谓少长咸集,高朋满座,生而备受期待。而且就在创立大会上&…

字体大宝库:设计师必备的专业免费英文字体

字体绝对是每一个设计非常重要的部分,设计者总是希望有最好的免费字体,以保持他们字体库的更新。所以今天我要向设计师们分享一个专业的免费英文字体集合。这些免费的字体是适用于任何类型的图形设计:Web,打印,动态图形…

神经网络学习

代价函数 首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有 m 个,每个包含一组输入 x 和一组输出信号 y,L 表示神经 网络层数,Sl表示每层的 neuron 个数(SL表示输出层神经元个数),SL代表最后一层中处理 单元的个数。 将神经网络的分类定义为两种情况:二类分…

干货|深度!“人工智能+制造”产业发展研究报告

来源::腾讯研究院工业革命以后的“自动化”概念追求的是机器自动生产,本质是“机器替人”,强调在完全不需要人的情况下进行不间断的大规模机器生产;而“智能化”追求的是机器的柔性生产,本质是“人机协同”…

机器学习系统设计与建议

当我们在运用训练好了的模型来预测未知数据的时候发现有较大的误差,我们下一步可以 做什么? 1. 获得更多的训练实例——通常是有效的,但代价较大,下面的方法也可能有效,可 考虑先采用下面的几种方法。 2. 尝试减少特征的数量 3. 尝试获得更多的特征 4. 尝试增加多项式特征…

李飞飞重返斯坦福后的大动作:开启「以人为中心的AI计划」

来源:网络大数据刚刚,李飞飞宣布斯坦福开启「以人为中心的 AI 计划」(Human-Centered AI Initiative,HAI),该项目由李飞飞和斯坦福大学前教务长 John Etchemendy 共同主导,Chris Manning 也参与其中。李飞飞在 twitter…

支持向量机学习

与逻辑回归和神经网络相比,支持向量机,或者简称 SVM,在学习复杂的非线性 方程时 供了一种更为清晰,更加强大的方式 如果我们用一个新的代价函数来代替,即这条从 0 点开始的水平直线,然后是一条斜 线,像上图。那么,现在让我给这两个方程命名,左边的函数,我称之为cost1(z),同时,…

中国安防行业十年报告:产值增涨四倍!双巨头全球称雄

来源:智东西近年来,安防是一个快速增长的行业, 过去十年, 复合 17%的行业增长率证明了行业的持续性,龙头份额提升持续获得超越平均的增速。 根据历史数据, 2008 年至 2017 年, 十年内中国安防行…

聚类算法学习

聚类是一种非监督学习方法 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正 样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一 个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到…

斯坦福大学:极限工况下的无人驾驶路径跟踪|厚势汽车

来源: 同济智能汽车研究所责任编辑:啜小雪文章译自 2017 年美国控制年会的会议论文原标题:Path-Tracking for Autonomous Vehicles at the Limit of Friction原作者:Vincent A. Laurense, Jonathan Y. Gohand J. Christian Gerdes…

SQLite DBHelp

c#连接SQLite SQLite这个精巧的小数据库,无需安装软件,只需要一个System.Data.SQLite.DLL文件即可操作SQLite数据库。SQLite是一个开源数据库,现在已变得越来越流行,它的体积很小,被广泛应用于各种不同类型的应用中。S…

手写数字识别实现

本文主要实现手写数字识别,利用多类逻辑回归与神经网络两种方法实现 Multi-class Classification 数据源 There are 5000 training examples in ex3data1.mat, where each training example is a 20 pixel by 20 pixel grayscale image of the digit. Each pixe…

Science:若DTC基因检测达2%成年人群,几乎所有人的身份或将无所遁形

来源:测序中国摘要:直接面向消费者(DTC)的基因检测不仅仅是有趣那么简单,它的有用性随着样本数据库的积累,会逐渐显露出来。消费级基因检测,即直接面向消费者(DTC)的基因…

降维算法学习

降维的动机 首先,让我们谈论降维是什么。作为一种生动的例子,我们收集的数据集,有许多, 许多特征,我绘制两个在这里。 假设我们未知两个的特征 x1:长度:用厘米表示;X2,是用英寸表示同一物体的长度。 所以,这给了我们高度冗余表示,也许不是两个分开的特征 x1 和 X2,这两个…

年龄大了学Java是爱好还是转型?

年龄大了学Java是爱好还是转型? 一、前言 35岁,好像年龄也不小了,工作也有十年多了,一直搞编程,也已经做过几年研发管理。较多使用的是Delphi语言,对这门语言曾经一度的情有独钟。那是我十年前的一…

人类为什么更聪明 | 人脑神经元关键结构差异被揭示

来源:DeepTech深科技人脑中,数以千计的神经元间电信号交替传送不断,而长短不一的树突(神经元胞体延伸)在神经元信息整合中起到了关键作用,由此我们的大脑细胞才能正常反应运作。而这次,MIT 的神…

机器学习之异常检测

问题的动机 什么是异常检测呢?为了解释这个概念,让我举一个例子吧: 假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行 QA (质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎 运转时产生的热量,或者引擎的振动等等。…