构建了三层神经网络来验证正则化和dropout对防止过拟合的作用。
首先看数据集,reg_utils.py包含产生数据集函数,前向传播,计算损失值等,代码如下:
import numpy as np
import matplotlib.pyplot as plt
import h5py
import sklearn
import sklearn.datasets
import sklearn.linear_model
import scipy.iodef sigmoid(x):"""Compute the sigmoid of xArguments:x -- A scalar or numpy array of any size.Return:s -- sigmoid(x)"""s = 1/(1+np.exp(-x))return sdef relu(x):"""Compute the relu of xArguments:x -- A scalar or numpy array of any size.Return:s -- relu(x)"""s = np.maximum(0,x)return sdef load_planar_dataset(seed):np.random.seed(seed)m = 400 # number of examplesN = int(m/2) # number of points per classD = 2 # dimensionalityX = np.zeros((m,D)) # data matrix where each row is a single exampleY = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)a = 4 # maximum ray of the flowerfor j in range(2):ix = range(N*j,N*(j+1))t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # thetar = a*np.sin(4*t) + np.random.randn(N)*0.2 # radiusX[ix] = np.c_[r*np.sin(t), r*np.cos(t)]Y[ix] = jX = X.TY = Y.Treturn X, Ydef initialize_parameters(layer_dims):"""Arguments:layer_dims -- python array (list) containing the dimensions of each layer in our networkReturns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])b1 -- bias vector of shape (layer_dims[l], 1)Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])bl -- bias vector of shape (1, layer_dims[l])Tips:- For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!- In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer."""np.random.seed(3)parameters = {}L = len(layer_dims) # number of layers in the networkfor l in range(1, L):parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])assert(parameters['W' + str(l)].shape == layer_dims[l], 1)return parametersdef forward_propagation(X, parameters):"""Implements the forward propagation (and computes the loss) presented in Figure 2.Arguments:X -- input dataset, of shape (input size, number of examples)parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":W1 -- weight matrix of shape ()b1 -- bias vector of shape ()W2 -- weight matrix of shape ()b2 -- bias vector of shape ()W3 -- weight matrix of shape ()b3 -- bias vector of shape ()Returns:loss -- the loss function (vanilla logistic loss)"""# retrieve parametersW1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]W3 = parameters["W3"]b3 = parameters["b3"]# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOIDZ1 = np.dot(W1, X) + b1A1 = relu(Z1)Z2 = np.dot(W2, A1) + b2A2 = relu(Z2)Z3 = np.dot(W3, A2) + b3A3 = sigmoid(Z3)cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)return A3, cachedef backward_propagation(X, Y, cache):"""Implement the backward propagation presented in figure 2.Arguments:X -- input dataset, of shape (input size, number of examples)Y -- true "label" vector (containing 0 if cat, 1 if non-cat)cache -- cache output from forward_propagation()Returns:gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables"""m = X.shape[1](Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - YdW3 = 1./m * np.dot(dZ3, A2.T)db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)dZ2 = np.multiply(dA2, np.int64(A2 > 0))dW2 = 1./m * np.dot(dZ2, A1.T)db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = 1./m * np.dot(dZ1, X.T)db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradientsdef update_parameters(parameters, grads, learning_rate):"""Update parameters using gradient descentArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(i)] = Wiparameters['b' + str(i)] = bigrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(i)] = dWigrads['db' + str(i)] = dbilearning_rate -- the learning rate, scalar.Returns:parameters -- python dictionary containing your updated parameters """n = len(parameters) // 2 # number of layers in the neural networks# Update rule for each parameterfor k in range(n):parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]return parametersdef predict(X, y, parameters):"""This function is used to predict the results of a n-layer neural network.Arguments:X -- data set of examples you would like to labelparameters -- parameters of the trained modelReturns:p -- predictions for the given dataset X"""m = X.shape[1]p = np.zeros((1,m), dtype = np.int)# Forward propagationa3, caches = forward_propagation(X, parameters)# convert probas to 0/1 predictionsfor i in range(0, a3.shape[1]):if a3[0,i] > 0.5:p[0,i] = 1else:p[0,i] = 0# print results#print ("predictions: " + str(p[0,:]))#print ("true labels: " + str(y[0,:]))print("Accuracy: " + str(np.mean((p[0,:] == y[0,:]))))return pdef compute_cost(a3, Y):"""Implement the cost functionArguments:a3 -- post-activation, output of forward propagationY -- "true" labels vector, same shape as a3Returns:cost - value of the cost function"""m = Y.shape[1]logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)cost = 1./m * np.nansum(logprobs)return costdef load_dataset():train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set featurestrain_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labelstest_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set featurestest_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labelsclasses = np.array(test_dataset["list_classes"][:]) # the list of classestrain_set_y = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))test_set_y = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))train_set_x_orig = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).Ttest_set_x_orig = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).Ttrain_set_x = train_set_x_orig/255test_set_x = test_set_x_orig/255return train_set_x, train_set_y, test_set_x, test_set_y, classesdef predict_dec(parameters, X):"""Used for plotting decision boundary.Arguments:parameters -- python dictionary containing your parameters X -- input data of size (m, K)Returnspredictions -- vector of predictions of our model (red: 0 / blue: 1)"""# Predict using forward propagation and a classification threshold of 0.5a3, cache = forward_propagation(X, parameters)predictions = (a3>0.5)return predictionsdef load_planar_dataset(randomness, seed):np.random.seed(seed)m = 50N = int(m/2) # number of points per classD = 2 # dimensionalityX = np.zeros((m,D)) # data matrix where each row is a single exampleY = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)a = 2 # maximum ray of the flowerfor j in range(2):ix = range(N*j,N*(j+1))if j == 0:t = np.linspace(j, 4*3.1415*(j+1),N) #+ np.random.randn(N)*randomness # thetar = 0.3*np.square(t) + np.random.randn(N)*randomness # radiusif j == 1:t = np.linspace(j, 2*3.1415*(j+1),N) #+ np.random.randn(N)*randomness # thetar = 0.2*np.square(t) + np.random.randn(N)*randomness # radiusX[ix] = np.c_[r*np.cos(t), r*np.sin(t)]Y[ix] = jX = X.TY = Y.Treturn X, Ydef plot_decision_boundary(model, X, y):# Set min and max values and give it some paddingx_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1h = 0.01# Generate a grid of points with distance h between themxx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))# Predict the function value for the whole gridZ = model(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)# Plot the contour and training examplesplt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)plt.ylabel('x2')plt.xlabel('x1')plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)plt.show()def load_2D_dataset():data = scipy.io.loadmat('datasets/data.mat')train_X = data['X'].Ttrain_Y = data['y'].Ttest_X = data['Xval'].Ttest_Y = data['yval'].T#plt.scatter(train_X[0, :], train_X[1, :], c=np.squeeze(train_Y), s=40, cmap=plt.cm.Spectral);return train_X, train_Y, test_X, test_Y
调用数据集,代码如下:
import numpy as np
import reg_utils
import matplotlib.pyplot as plt
import testCases
import sklearn
import sklearn.datasets
train_X, train_Y, test_X, test_Y=reg_utils.load_2D_dataset()
print('训练样本={}'.format(train_X.shape))
print('训练样本标签={}'.format(train_Y.shape))
print('测试样本={}'.format(test_X.shape))
plt.show()
打印结果:
第一种方法不用正则化和dropout即lambda=0,keep_prob=1,代码如下
import numpy as np
import reg_utils
import matplotlib.pyplot as plt
import testCases
import sklearn
import sklearn.datasets
train_X, train_Y, test_X, test_Y=reg_utils.load_2D_dataset()
print('训练样本={}'.format(train_X.shape))
print('训练样本标签={}'.format(train_Y.shape))
print('测试样本={}'.format(test_X.shape))
# plt.show()
"""
初始化权重 方差为2/n
"""
def initialize_parameters_he(layers_dims):L=len(layers_dims)parameters={}for i in range(1,L):parameters['W'+str(i)]=np.random.randn(layers_dims[i],layers_dims[i-1])\*np.sqrt(2.0/layers_dims[i-1])parameters['b' + str(i)]=np.zeros((layers_dims[i],1))return parameters
'''
计算损失值:带有L2正则项的损失值
'''
def compute_cost_with_regularization(A3,Y,parameters,lambd):m=Y.shape[1]W1 = parameters['W1']W2 = parameters['W2']W3 = parameters['W3']cost_entropy=reg_utils.compute_cost(A3, Y)#cost_regularize = np.sum(np.sum(np.square(Wl)) for Wl in [W1, W2, W3]) * lambd / (2 * m)cost_regularize=np.sum(np.sum(np.square(Wl)) for Wl in [W1,W2,W3])* lambd / (2 * m)cost=cost_entropy+cost_regularizereturn cost
"""
前向传播带有dropout
"""
def forward_propagation_with_dropout(X,paremeters,keep_prob):W1 = paremeters['W1']b1 = paremeters['b1']W2 = paremeters['W2']b2 = paremeters['b2']W3 = paremeters['W3']b3 = paremeters['b3']Z1=np.dot(W1,X)+b1A1=reg_utils.relu(Z1)D1=np.random.rand(A1.shape[0],A1.shape[1])#np.random.rand 输出值在0 1之间D1=(D1<keep_prob) # 返回的是 true false#去掉A1上的一些神经元 只剩下 要的和0A1=np.multiply(A1,D1)#放大回去 确保A1的期望值不变A1=A1/keep_probZ2 = np.dot(W2, A1) + b2A2 = reg_utils.relu(Z2)D2 = np.random.rand(A2.shape[0], A2.shape[1])D2 = (D2 < keep_prob) # 返回的是 true falseA2 = np.multiply(A2, D2)A2 = A2 / keep_probZ3 = np.dot(W3, A2) + b3A3=reg_utils.sigmoid(Z3)cache=(Z1,D1,A1,W1,b1,Z2,D2,A2,W2,b2,Z3,A3,W3,b3,)return A3,cache
'''
后向传播:带有dropout
'''
def back_propagation_with_dropout(X,Y,cache,keep_prob):m=X.shape[1](Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3,)=cachedZ3 = 1. / m * (A3 - Y)dW3 = np.dot(dZ3, A2.T)db3 = np.sum(dZ3, axis=1, keepdims=True)dA2 = np.dot(W3.T, dZ3)dA2=np.multiply(dA2,D2)dA2=dA2/keep_probdZ2 = np.multiply(dA2, np.int64(A2 > 0))dW2 = np.dot(dZ2, A1.T)db2 = np.sum(dZ2, axis=1, keepdims=True)dA1 = np.dot(W2.T, dZ2)dA1 = np.multiply(dA1, D1)dA1 = dA1 / keep_probdZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = np.dot(dZ1, X.T)db1 = np.sum(dZ1, axis=1, keepdims=True)gradients={'dZ3':dZ3,'dW3':dW3,'db3':db3,'dA2':dA2,'dZ2':dZ2,'dW2':dW2,'db2':db2,'dA1':dA1,'dZ1':dZ1,'dW1':dW1,'db1':db1}return gradients
"""
后向传播带有L2正则项
"""
def back_propagation_with_regularization(X,Y,lambd,cache):m=X.shape[1](Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache#X,W1,A1,W2,A2,W3,A3=cachedZ3=1./m *(A3-Y)dW3=np.dot(dZ3,A2.T)+W3*(lambd/m)db3=np.sum(dZ3, axis=1, keepdims = True)dA2=np.dot(W3.T,dZ3)dZ2=np.multiply(dA2,np.int64(A2 > 0))dW2=np.dot(dZ2,A1.T)+W2*(lambd/m)#由此可看处 lambda越大 W的惩罚越大db2 = np.sum(dZ2, axis=1, keepdims=True)dA1=np.dot(W2.T,dZ2)dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = np.dot(dZ1, X.T) + W1 * (lambd / m)db1 = np.sum(dZ1, axis=1, keepdims=True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,"dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,"dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients
"""
构建模型
"""
def model(X,Y,num_iterations,learning_rate,lambd=0,keep_prob=1):layers_dims=[X.shape[0], 20, 3, 1]parameters=initialize_parameters_he(layers_dims)costs=[]for i in range(num_iterations):if keep_prob==1:A3, cache=reg_utils.forward_propagation(X, parameters)elif keep_prob<1:A3, cache=forward_propagation_with_dropout(X, parameters, keep_prob)if lambd==0:cost = reg_utils.compute_cost(A3, Y)else:cost=compute_cost_with_regularization(A3,Y,parameters,lambd)if lambd==0 and keep_prob==1:gradients=reg_utils.backward_propagation(X, Y, cache)elif lambd!=0:gradients=back_propagation_with_regularization(X, Y, lambd, cache)elif keep_prob<1:gradients=back_propagation_with_dropout(X,Y,cache,keep_prob)parameters=reg_utils.update_parameters(parameters, gradients, learning_rate)if i%1000==0:print('after {} iterations cost is {}'.format(i,cost))costs.append(cost)plt.plot(costs)plt.xlabel('num_iterations')plt.ylabel('costs')plt.title('learning rate is {}'.format(str(learning_rate)))plt.show()return parametersdef test():
#######test compute_cost_with_regularization# a3, Y_assess, parameters=testCases.compute_cost_with_regularization_test_case()# cost=compute_cost_with_regularization(a3, Y_assess, parameters,0.1)# print(cost)
########################
#######back_propagation_with_regularization# X_assess, Y_assess, cache=testCases.backward_propagation_with_regularization_test_case()# gradients=back_propagation_with_regularization(X_assess, Y_assess,0.7,cache)# print('dw1={} dw2={} dw3={}'.format(gradients['dW1'],gradients['dW2'],gradients['dW3']))
###################test forward_propagation_with_dropout# X_assess, parameters=testCases.forward_propagation_with_dropout_test_case()# A3, cache=forward_propagation_with_dropout(X_assess, parameters,keep_prob=0.7)# print('A3={}'.format(A3))
###################test backward_propagation_with_dropoutX_assess, Y_assess, cache=testCases.backward_propagation_with_dropout_test_case()gradients=back_propagation_with_dropout(X_assess, Y_assess, cache,keep_prob=0.8)print('dA1={}'.format(gradients['dA1']))print('dA2={}'.format(gradients['dA2']))
"""
测试模型
"""
def test_model():parameters = model(train_X, train_Y, num_iterations=30000, learning_rate=0.3, lambd=0,keep_prob=1)print('on the train sample')train_prediction=reg_utils.predict(train_X, train_Y,parameters)print('on the test sample')test_prediction = reg_utils.predict(test_X, test_Y, parameters)
if __name__=='__main__':#test()test_model()#pass
打印结果:可看出过拟合了
lambda=0.7,keep_prob=1打印结果:可看出减少了过拟合
lambda=0.keep_prob=0.86,打印结果:可看出dropout也能减少过拟合。