数据集提供的代码放在kt_utils.py:
import keras.backend as K
import math
import numpy as np
import h5py
import matplotlib.pyplot as pltdef mean_pred(y_true, y_pred):return K.mean(y_pred)def load_dataset():train_dataset = h5py.File('datasets/train_happy.h5', "r")train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set featurestrain_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels#print(train_set_x_orig.shape) ##(600, 64, 64, 3)#print(train_set_y_orig)##(600,)test_dataset = h5py.File('datasets/test_happy.h5', "r")test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set featurestest_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels#print(test_set_x_orig.shape)#(150, 64, 64, 3)#print(test_set_y_orig.shape)#(150,)classes = np.array(test_dataset["list_classes"][:]) # the list of classes#print(classes) #[0,1]train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))#print(train_set_y_orig.shape) (1, 600)#print(test_set_y_orig.shape) (1, 150)return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
#load_dataset()
查看数据集:
import kt_utils
import cv2
import matplotlib.pyplot as plt
train_set_x_orig, train_set_Y, test_set_x_orig, test_set_Y, classes = kt_utils.load_dataset()
print('训练样本={}'.format(train_set_x_orig.shape))
print('训练样本标签={}'.format(train_set_Y.shape))
print('测试样本={}'.format(test_set_x_orig.shape))
print('测试样本标签={}'.format(test_set_Y.shape))
print('第五个样本={}'.format(train_set_Y[0,5]))
cv2.imshow('1.jpg',train_set_x_orig[5,:,:,:])
cv2.waitKey()
print('第六个样本={}'.format(train_set_Y[0,6]))
cv2.imshow('1.jpg',train_set_x_orig[6,:,:,:])
cv2.waitKey()
# plt.imshow(train_set_x_orig[5,:,:,:])
# plt.show()
打印结果:可看出600个训练样本,150个测试样本,size=(64,64,3),其中happy的标签为1,not happy的标签为0,故标签也要经过one-hot。
开始训练模型代码如下:
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input,ZeroPadding2D,Conv2D,BatchNormalization,Activation,MaxPooling2D
from keras.layers import Flatten,Dense
import kt_utils
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
from keras.utils import plot_model
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
import time
import cv2
"""
转换成one-hot
"""
def convert_to_one_hot(Y, C):Y = np.eye(C)[Y.reshape(-1)].Treturn Y
"""
获取数据 并将标签转换成one-hot
"""
def convert_data():train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes=kt_utils.load_dataset()train_x=train_set_x_orig/255test_x = test_set_x_orig / 255train_y=convert_to_one_hot(train_set_y_orig,2).Ttest_y = convert_to_one_hot(test_set_y_orig, 2).T#print(train_y.shape)return train_x,train_y,test_x,test_y
"""
查看样本
"""
def test():train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes=kt_utils.load_dataset()X_train=train_set_x_orig/255X_test = test_set_x_orig / 255Y_train=train_set_y_orig.TY_test = test_set_y_orig.Tplt.imshow(train_set_x_orig[63,:,:,:])plt.show()
"""
构建CNN模型
"""
def model(input_shape):X_input=Input(input_shape)print('输入尺寸={}'.format(X_input.shape))#Zero paddingX=ZeroPadding2D((3,3))(X_input)print('输补完零尺寸={}'.format(X.shape))#CONV->BN->RELUX=Conv2D(32,(7,7),strides=(1,1),name='conv0')(X)print('第一次卷积尺寸={}'.format(X.shape))X=BatchNormalization(axis=-1,name='bn0')(X)X=Activation('relu')(X)#MAXPOOLX=MaxPooling2D((2,2),name='max_pool')(X)print('第一池化尺寸={}'.format(X.shape))#FLATTEN+FULLYCONNECTEDX=Flatten()(X)X=Dense(2,activation='sigmoid',name='fc')(X)model=Model(inputs=X_input,outputs=X,name='HappyModel')return model
"""
测试模型
"""
def testModel():train_x, train_y, test_x, test_y=convert_data()#定义好模型结构happyModel=model(input_shape=[64,64,3])#模型编译happyModel.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])#模型训练start_time=time.time()print('============模型开始训练=====================')happyModel.fit(x=train_x,y=train_y,epochs=1,batch_size=32)end_time=time.time()print('train_time={}'.format(end_time-start_time))# save the model#happyModel.save('my_model_v1.h5')print('============模型开始测试=====================')preds=happyModel.evaluate(x=test_x,y=test_y,batch_size=32)print()print('loss={}'.format(preds[0]))print('Test accuarcy={}'.format(preds[1]))#打印参数happyModel.summary()#可视化模型plot_model(happyModel,to_file='HappyModel.png')SVG(model_to_dot(happyModel).create(prog='dot',format='svg'))#test my_imageprint('============测试自己的照片===================')path = 'images/my_image.jpg'img = image.load_img(path, target_size=(64, 64))plt.imshow(img)plt.show()x = image.img_to_array(img) # (64,64,3)x = x.reshape(1, 64, 64, 3)x=preprocess_input(x)y=happyModel.predict(x)print('预测值={}'.format(y))
def testPicture():# img=cv2.imread('my_image.jpg')# cv2.imshow('img',img)path='images/my_image.jpg'img=image.load_img(path,target_size=(64,64))plt.imshow(img)plt.show()print('img=',img)x=image.img_to_array(img)#(64,64,3)print('x=',x)print(x.shape)#x = np.expand_dims(x, axis=0)#(1,64,64,3)x=x.reshape(64,64,3)print('x=',x)print(x.shape)plt.imshow(x)plt.show()
if __name__=='__main__':#test()testModel()#testPicture()
打印结果:?号代表样本数,可知池化过后尺寸为(32,32,32)
训练次数是一次,结果如下:可知每张图片训练时间为17ms,600张时间为10s,跟自己记录的train_time差一点点,因为还有别的开支。
测试结果:测试精度一般
打印出模型参数,并且可视化:可看成conv0参数=7×7×3×32(W的参数)+32(b的参数)=4736
测试自己的照片:
打印结果:貌似是happy 貌似又不是 样本量少 加上训练次数少 肯定是不准的。