opencv--图像金字塔

一,高斯金字塔--图片经过高斯+下采样

"""
高斯金字塔
"""
def gauss_pyramid():img = cv2.imread('./data/img4.png')lower_reso = cv2.pyrDown(img)lower_reso2 = cv2.pyrDown(lower_reso)plt.subplot(131), plt.imshow(img)plt.title('Input Image')plt.subplot(132), plt.imshow(lower_reso)plt.title('lower_1')plt.subplot(133), plt.imshow(lower_reso2)plt.title('lower_1')plt.show()

经过两次下采样的还原回去

与原图相比更加的模糊,因为丢失了高频信息。

二,拉普拉斯金字塔

由于高频细节信息在卷积和下采样中丢失,其保留所有层所丢失的高频信息,用于图像恢复,故可以将拉普拉斯保存的高频信息与高斯金字塔的放大图片融合

"""
图像融合
"""
def blend_image():A = cv2.imread('./data/apple.png')B = cv2.imread('./data/orange.png')b, g, r = cv2.split(A)A = cv2.merge([r, g, b])b, g, r = cv2.split(B)B= cv2.merge([r, g, b])A=cv2.resize(A,(240,240))B = cv2.resize(B, (240, 240))# print(A.shape)# print(B.shape)# generate Gaussian pyramid for AG = A.copy()gpA = [G]for i in range(6):G = cv2.pyrDown(G)gpA.append(G)# generate Gaussian pyramid for BG = B.copy()gpB = [G]for i in range(6):G = cv2.pyrDown(G)gpB.append(G)# generate Laplacian Pyramid for AlpA = [gpA[5]]# print(np.array(lpA).shape)for i in range(5, 0, -1):size = (gpA[i - 1].shape[1], gpA[i - 1].shape[0])GE = cv2.pyrUp(gpA[i],dstsize=size)L = cv2.subtract(gpA[i - 1], GE)lpA.append(L)# generate Laplacian Pyramid for BlpB = [gpB[5]]for i in range(5, 0, -1):size = (gpB[i - 1].shape[1], gpB[i - 1].shape[0])GE = cv2.pyrUp(gpB[i],dstsize=size)L = cv2.subtract(gpB[i - 1], GE)lpB.append(L)# Now add left and right halves of images in each levelLS = []for la, lb in zip(lpA, lpB):rows, cols, dpt = la.shapels = np.hstack((la[:, 0:cols // 2], lb[:, cols // 2:]))LS.append(ls)# now reconstructls_ = LS[0]for i in range(1, 6):size = (LS[i].shape[1], LS[i].shape[0])ls_ = cv2.pyrUp(ls_,dstsize=size)ls_ = cv2.add(ls_, LS[i])# image with direct connecting each halfreal = np.hstack((A[:, :cols // 2], B[:, cols // 2:]))plt.subplot(121)plt.imshow(ls_)plt.subplot(122)plt.imshow(real)plt.show()

打印结果:

左图是经过拉普拉斯金字塔的融合,右图是直接融合的。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493559.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中国移动:5G蜂窝IoT关键技术分析

来源:5G本文讨论了蜂窝物联网的技术现状,针对增强机器类通信和窄带物联网技术标准,提出了2种现网快速部署方案,并进一步指出了C-IoT面向5G的演进路径。该路径充分考虑了5G网络中网络功能虚拟化、软件定义网络、移动边缘计算和大数…

清华大学发布:人脸识别最全知识图谱

来源:智东西摘要:本期我们推荐来自清华大学副教授唐杰领导的学者大数据挖掘项目Aminer的研究报告,讲解人脸识别技术及其应用领域,介绍人脸识别领域的国内玩人才并预测该技术的发展趋势。自20世纪下半叶,计算机视觉技术…

图像变换dpi(tif->jpg),直方图均衡化,腐蚀膨胀,分水岭,模板匹配,直线检测

一.图像变换dpi 1.示例1 import numpy as np from PIL import Image import cv2 def test_dp():path./gt_1.tif# imgImage.open(path)# print(img.size)# print(img.info)imgcv2.imread(path)imgImage.fromarray(img)print(img.size)print(img.info)img.save(test.jpg, dpi(3…

CV中的经典网络模型

目标检测 目标检测,不仅要识别目标是什么(分类),还要知道目标的具体位置(可以当作回归来做)。 RCNN Selective Search 算法获得候选框,Alexnet提取特征,SVM对每个候选框区域打分。…

技术阅读周刊第十一期

技术阅读周刊,每周更新。 历史更新 20231124:第七期20231201:第八期20231215:第十‍期 A Comprehensive guide to Spring Boot 3.2 with Java 21, Virtual Threads, Spring Security, PostgreSQL, Flyway, Caching, Micrometer, O…

数据智能是大数据的未来

来源:中国信息产业网 近日,两家大数据领域的代表性企业Cloudera和Hortonworks宣布了它们相对平等的合并,宣称新公司将创建世界领先的下一代数据平台并提供业界首个企业数据云,这令很多人感到意外,大数据的未来何去何从…

利用GAN原始框架生成手写数字

这一篇GAN文章只是让产生的结果尽量真实,还不能分类。 本次手写数字GAN的思想: 对于辨别器,利用真实的手写数字(真样本,对应的标签为真标签)和随机噪声经过生成器产生的样本(假样本&#xff0…

DL也懂纹理吗——图像的纹理特征

工作中遇到一个问题:对于同一场景,训练好的DL模型能把大部分样本分类准确,而对于少量负样本,DL会错分到另外一个对立的类中。错分的样本可以认为是难分的样本,但是我们还想知道这两种样本到底是哪里的差异导致DL做出了…

排序算法--(冒泡排序,插入排序,选择排序,归并排序,快速排序,桶排序,计数排序,基数排序)

一.时间复杂度分析 - **时间复杂度**:对排序数据的总的操作次数。反应当n变化时,操作次数呈现什么规律 - **空间复杂度**:算法在计算机内执行时所需要的存储空间的容量,它也是数据规模n的函数。 1.例题: 有一个字符串数组&…

肠里细菌“肚里蛔虫”:肠脑研究缘何越来越热

来源:科学网最懂你大脑的,可能不是“肚子里的蛔虫”,而是肠子里的细菌——肠道菌群对神经系统、心理和行为方面的影响正成为一个新兴热点领域。在日前举办的美国神经科学学会年会上,一张海报上的大脑切片显微镜图像显示&#xff0…

SVM原理与实战

先看线性可分问题。对于线性可分,其实感知机就可以解决。但是感知机只是找到一个超平面将数据分开,而这样的超平面可能是平行的无限多个,我们需要在这其中找到最优的一个。怎么衡量一个超平面是不是最优的呢,直观上讲,…

2014-01-01

一:HyperlinkButton点击后打开新窗口的方法 1,直接在界面中写这段代码就可以了: <HyperlinkButton NavigateUri"http://www.cnblogs.com/wsdj-ITtech/" Content"Click Me" TargetName"_blank" FontSize"28" Height"50"…

李飞飞高徒:斯坦福如何打造基于视觉的智能医院?

作者&#xff1a;Albert Haque、Michelle Guo来源&#xff1a;机器之心自 2009 年担任斯坦福人工智能实验室和视觉实验室的负责人&#xff0c;李飞飞在推动计算机视觉方面研究的同时&#xff0c;还密切关注 AI 医疗的发展。昨日&#xff0c;李飞飞离任斯坦福 AI 实验室负责人一…

tensorflow知识点

一.bazel编译tensorflow注意版本号: 在/tensorflow/tensorflow/configure.py 查看bazel版本号 https://github.com/tensorflow/tensorflow https://github.com/bazelbuild/bazel/releases?after0.26.1 https://tensorflow.google.cn/ 二&#xff0c;基础知识点 1.打印出…

eclipse中如何导入jar包

如图&#xff0c;首先右键点击项目&#xff0c;选择最下面的properties&#xff0c; 然后进去之后点击java build path&#xff0c;右边会出来4个选项卡&#xff0c;选择libraries&#xff0c; 这时候最右边会有多个选项&#xff0c;第一个add jars是添加项目文件中的jar包&…

线性-LR-softmax傻傻分不清楚

softmax 对于分类网络&#xff0c;最后一层往往是全连接层&#xff0c;如果是N分类&#xff0c;那么最终的全连接层有N个结点。很显然&#xff0c;每个节点对应一个类&#xff0c;该节点的权重越大&#xff0c;说明网络越倾向于认为输入样本属于该类。这其实就是Softmax的思想…

一图看懂国外智能网联汽车传感器产业发展!

来源&#xff1a;赛迪智库编辑&#xff1a;煜 佳未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能&#xff0c;互联网和脑科学交叉研究机构。未来智能实验室的主要工作包括&#xff1a;建立AI智能系统智商评测体系&#xff0c;开展世界人工智能智商评测&#…

深度学习中的信息论——交叉熵

信息量 可以说就信息量是在将信息量化。首先信息的相对多少是有切实体会的&#xff0c;有的人一句话能包含很多信息&#xff0c;有的人说了等于没说。我们还可以直观地感觉到信息的多少和概率是有关的&#xff0c;概率大的信息也相对低一些。为了量化信息&#xff0c;一个做法…

传统手工特征--opencv

一&#xff0c;颜色特征&#xff1a; 简单点来说就是将一幅图上的各个像素点颜色统计出来&#xff0c;适用颜色空间&#xff1a;RGB&#xff0c;HSV等颜色空间&#xff0c; 具体操作&#xff1a;量化颜色空间&#xff0c;每个单元&#xff08;bin&#xff09;由单元中心代表&…

特写李飞飞:她激励了人工智能的发展,更要给人工智能赋予人的价值

文 | MrBear 编辑 | 杨晓凡来源&#xff1a;雷锋网摘要&#xff1a;李飞飞无疑是人工智能界最响亮的名字之一。她既对机器学习领域的发展做出了杰出的贡献&#xff0c;也是普通大众眼中温和的人工智能技术宣扬者&#xff0c;还是谷歌这一科技巨头的人工智能技术领导人之一。WI…