tensorflow实现回归

直线拟合:y=w*x+b

"""
回归:直线拟合
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
x_data=np.random.rand(100)
y_data=x_data*5+1W=tf.Variable(0.)
b=tf.Variable(0.)
y_pred=W*x_data+bx=tf.placeholder(shape=None,dtype=tf.float32)loss=tf.reduce_mean(tf.square(y_data-y_pred))
optimizer=tf.train.GradientDescentOptimizer(0.3).minimize(loss)
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(100):sess.run(optimizer)if i %10==0:W1,b1=sess.run([W,b])print('step={},W={},b={}'.format(i,W1,b1))prediction=sess.run(y_pred,feed_dict={x:x_data})plt.scatter(x_data,y_data)plt.plot(x_data,prediction)plt.show()

二,二次拟合 :y=w*x*x+b ,一层hidden layer,10个节点,一个output一个节点

"""
回归:二次拟合
"""
import tensorflow as tf
import  numpy as np
import matplotlib.pyplot as plt
#生成两百个随机点
x_data=np.linspace(-1,1,200).reshape([-1,1]).astype(np.float32)
noise=np.random.normal(loc=0.,scale=0.02,size=x_data.shape)
y_data=np.square(x_data)+noisex=tf.placeholder(shape=[None,1],dtype=tf.float32)
y=tf.placeholder(shape=[None,1],dtype=tf.float32)
#hidden_layer
W1=tf.Variable(tf.random_normal(shape=[1,10],stddev=tf.sqrt(2.)),dtype=tf.float32)
b1=tf.Variable(tf.zeros(shape=[1,10]),dtype=tf.float32)#output_layer
W2=tf.Variable(tf.random_normal(shape=[10,1],stddev=tf.sqrt(2./10)),dtype=tf.float32)
b2=tf.Variable(tf.zeros(shape=[1,1]),dtype=tf.float32)Z1=tf.matmul(x_data,W1)+b1
A1=tf.nn.relu(Z1)
y_pred=tf.matmul(A1,W2)+b2
# y_pred=tf.nn.relu(Z2)loss=tf.reduce_mean(tf.reduce_sum(tf.square(y-y_pred),axis=1))
optimizer=tf.train.GradientDescentOptimizer(0.2).minimize(loss)with tf.Session() as sess:sess.run(tf.global_variables_initializer())costs=[]for i in range(2000):cost,_=sess.run([loss,optimizer],feed_dict={x:x_data,y:y_data})if i%100==0:costs.append(cost)prediction = sess.run(y_pred, feed_dict={x: x_data})plt.scatter(x_data, y_data)plt.plot(x_data,prediction)plt.show()plt.plot(costs)plt.show()

打印结果:


 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微软亚研院20周年独家撰文:数据智能的现在与未来

文:微软亚洲研究院软件分析组来源:雷锋网摘要:今年是微软亚洲研究院(MSRA)20周年,站在这个大节点上,MSRA副院长张冬梅以及她的团队写了这篇有关数据智能的文章,对该领域的发展和未来…

二维与三维之间的桥梁——点云

在做图像配准时就听闻过一些点云的方法,却没对其有太多的认识,只是知道点云point cloud顾名思义就是一些离散点的集合。现在在无人驾驶中一些激光雷达的作用其实就是生成点云数据,接下来介绍一下点云数据的含义和基础的使用方法。 虽然特斯拉…

python刷题+leetcode(第一部分)

1. 设计前中后队列 思路:python代码直接利用list的insert特性 class FrontMiddleBackQueue:def __init__(self):self.queque []def pushFront(self, val: int) -> None:self.queque.insert(0, val)def pushMiddle(self, val: int) -> None:self.queque.insert(len(self…

LINQ基础概述

介绍LINQ基础之前,首说一下LINQ 的历史和LINQ是什么,然后说一下学习 LINQ要了解的东西和 LINQ基础语法LINQ 的历史从语言方面的进化 –委托 –匿名方法 –Lambda表达式 –Linq查询表达式 上边这四个我会在下边一一解说 从时间方面的演进 –2004年 –2005…

机器人“快递小哥”上岗了!京东配送机器人编队长沙亮相

11 月 22 日上午,京东物流配送机器人智能配送站启用仪式在长沙举行,随着载有用户订单的配送机器人编队从站内依次发出,全球首个由机器人完成配送任务的智能配送站正式投入使用。首个京东配送机器人智能配送站位于长沙市科技新城,占…

3D打印技术如何影响未来

来源:学习时报我们应该对3D打印技术保持谨慎态度,但过度反应和监管也可能会扼杀创新。历史经验表明,在技术的不利一面被应用之前进行规范构建对话是最有效的。因此,各国际主体,包括国家、商业领袖、政府官员和其他政策…

HDR简单介绍

问题定义 HDR字面意思是高动态范围High Dynamic Range,而动态范围是高图像质量的五个要素之一(其余是1. 分辨率,2.位深度,3.帧速率,4.色域),而画质直接关系到人眼的主观感受。 如果将动态范围理解为量化的…

争议中挺进全新里程——中国“超级对撞机”《概念设计报告》发布侧记

来源:科技导报2018 年11 月12 日下午6 点半,北京市玉泉路,中国科学院高能物理研究所,所有建筑和行人沐浴在初冬夜晚的清冷与安静之中。不同的是,主楼西侧一座新楼的大厅里,却充满了热望和兴奋。这里正进行着…

haar级联分类器--人脸检测和匹配

分类器链接,https://download.csdn.net/download/fanzonghao/10582586 代码: import numpy as np import cv2# 实例化人脸分类器 face_cascade cv2.CascadeClassifier(./haarcascades/haarcascade_frontalface_default.xml) # 实例化眼睛分类器 eye_c…

社会科技奖不是新鲜事?如何真正做大

来源:中国科学报我国的社会力量设立科学技术奖励起步于上世纪80年代。科技部网站上2018年9月5日更新的《社会科技奖励目录》显示,目前我国共有269个社会科技奖项登记在册,其中最后一个正是未来科学大奖。11月18日,2018未来科学大奖…

泊松融合——用了拉普拉斯但没有金字塔

图像融合的方式有alpha融合,拉普拉斯金字塔融合。 同样是基于拉普拉斯算子,我们可以直接用求解的方式得到融合后的图像。因为人眼对二阶导是更敏感的,所以只要我们指定了融合区域内部的梯度值,并且知道融合边界处的值&#xff0c…

三层神经网络实现手写字母的识别(基于tensorflow)

数据集的制作参考这篇文章: https://blog.csdn.net/fanzonghao/article/details/81229409 一,读取数据集 import tensorflow as tf import numpy as np import pickle import matplotlib.pyplot as plt #对于x变成(samles,pixs),y变成one_hot (sample…

(转)Kinect背景移除支持多人

原文:http://blogs.msdn.com/b/k4wdev/archive/2013/10/22/using-kinect-background-removal-with-multiple-users.aspx?utm_sourcetuicool Introduction: Background Removal in Kinect for Windows The 1.8 release of the Kinect for Windows Developer Toolkit…

德国汉堡科学院院士张建伟:信息物理系统驱动智能未来

来源:OFweek工控网随着第四次工业革命的到来,信息技术(IT)和运营技术(OT)的融合成为新趋势,工厂开始进入数字化转型阶段,而德国“工业4.0”战略给全球制造业发展带来启示&#xff0c…

两层卷积网络实现手写字母的识别(基于tensorflow)

可和这篇文章对比,https://blog.csdn.net/fanzonghao/article/details/81489049,数据集来源代码和链接一样。 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import read_pickle_datasettrain_dataset,train_label,vali…

焦李成教授谈深度神经网络发展历程

来源:西电人工智能学院摘要:焦李成教授谈深度神经网络发展历程2018年11月18日下午,计算机科学与技术学部主任、人工智能学院焦李成教授在成都参加了由中国人工智能学会主办的人工智能大讲堂并做特邀报告,焦李成教授在报告中回顾了…

KNN实现CIFAR-10数据集识别

cs231n链接:http://cs231n.github.io/linear-classify/, 训练集链接:https://download.csdn.net/download/fanzonghao/10592049 KNN缺点:每个测试样本都要循环一遍训练样本。 该数据集由5个data_batch和一个test_batch构成&…

近期苹果、Facebook等科技巨头股价缘何不断下跌?

来源:资本实验室近期,FAANG(Facebook、亚马逊、苹果、Netflix、谷歌)等科技巨头股价都出现了不同程度的下跌,而美国科技股整体的持续大跌,更是引发了全球股市振荡。其中,亚马逊在今年9月初达曾达到1万亿美元市值&#…

概率论基础知识各种分布

离散分布:伯努力分布,二项分布,possion分布 一,伯努力分布 #执硬币 x_arrnp.array([0,1]) #x为1的概率 p0.7 #0 1分布 #由PMF生成对应的概率 离散事件 pr_arrstats.bernoulli.pmf(x_arr,p) plt.plot(x_arr,pr_arr,markero,lines…

AI 芯片和传统芯片的区别

来源:内容来自「知乎汪鹏 」所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI算法,但是速度慢,性能低,无法实际商用。比如,自动驾驶需要识别道路行…