初始化条件变量
int pthread_cond_init(pthread_cond_t *cond,const pthread_condattr_t *attr);
返回值:函数成功返回0;任何其他返回值都表示错误
初始化一个条件变量。当参数attr为空指针时,函数创建的是一个缺省的条件变量。
阻塞
int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);
wait需要传入已经lock的mutex变量。进入wait函数会自动解锁mutex参数指向的互斥锁,并使当前线程阻塞在cond参数指向的条件变量上。当线程被唤醒,退出wait函数时会自动对锁再次进行加锁,成功后返回。
被阻塞的线程可以被pthread_cond_signal函数,pthread_cond_broadcast函数唤醒。一般一个条件表达式都是在一个互斥锁的保护下被检查。当条件表达式未被满足时,线程将仍然阻塞在这个条件变量上。当另一个线程改变了条件的值并向条件变量发出信号时,等待在这个条件变量上的一个线程或所有线程被唤醒,接着都试图再次占有相应的互斥锁。
int pthread_cond_timedwait(pthread_cond_t *cond,pthread_mutex_t *mutex, const structtimespec * abstime);
函数到了一定的时间,即使条件未发生也会解除阻塞。这个时间由参数abstime指定。
唤醒
int pthread_cond_signal(pthread_cond_t *cond);
函数被用来释放被阻塞在指定条件变量上的一个线程。唤醒阻塞在条件变量上的所有线程的顺序由调度策略决定,如果线程的调度策略是SCHED_OTHER类型的,系统将根据线程的优先级唤醒线程。
int pthread_cond_broadcast(pthread_cond_t *cond);
函数唤醒所有被pthread_cond_wait函数阻塞在某个条件变量上的线程,参数cond被用来指定这个条件变量。
释放条件变量
int pthread_cond_destroy(pthread_cond_t *cond);
一个例子:
#include <stdio.h>#include <pthread.h>#include <unistd.h>pthread_mutex_t count_lock;pthread_cond_t count_nonzero;unsigned count = 0;void *decrement_count(void *arg){pthread_mutex_lock(&count_lock);printf("decrement_count get count_lock/n");while(count == 0){printf("decrement_count count == 0 /n");printf("decrement_count before cond_wait /n");pthread_cond_wait(&count_nonzero, &count_lock);printf("decrement_count after cond_wait /n");}count = count - 1;pthread_mutex_unlock(&count_lock);}void *increment_count(void *arg){pthread_mutex_lock(&count_lock);printf("increment_count get count_lock /n");if(count == 0){printf("increment_count before cond_signal /n");pthread_cond_signal(&count_nonzero);printf("increment_count after cond_signal /n");}count = count + 1;pthread_mutex_unlock(&count_lock);}int main(void){pthread_t tid1, tid2;pthread_mutex_init(&count_lock, NULL);pthread_cond_init(&count_nonzero, NULL);pthread_create(&tid1, NULL, decrement_count, NULL);sleep(2);pthread_create(&tid2, NULL, increment_count, NULL);sleep(10);pthread_exit(0);return 0;}
运行结果:
decrement_count get count_lock
decrement_count count == 0
decrement_count before cond_wait
increment_count get count_lock
increment_count before cond_signal
increment_count after cond_signal
decrement_count after cond_wait
调试程序的运行过程:
1、开始时 counter 为0 (main)
2、首先生成一个thrd1线程运行decrement_counter(),此线程内函数运行流程为:
先锁定 互斥锁(count_lock) 如果counter为0,此线程被阻塞在条件变量(count_nonzero)上.同时释放互斥锁count_lock(wait函数内部会先释放锁,等待signal激活后自动再加上锁).
3、与此同时主程序还在运行,创建另一个线程thrd2运行 increment_counter,此线程内的函数流程如下:
先锁定 互斥锁(count_lock)(wait内部释放锁的互斥锁) 如果counter为0, 唤醒在条件变量(count_nonzero)上的线程即thrd1.但是由于互斥锁count_lock被当前thrd2锁住(signal激活后,线程1的wait内部需要对count_lock上锁), thrd1还是在等待. 然后thrd2中对count+1,释放互斥锁。此时thrd1由于互斥锁释放得以运行,重新判断counter是不是为0,如果为0再把线程阻塞在条件变量count_nonzero上,但这时counter已经为1了.所以线程继续运行.counter-1释放互斥锁(退出后,运行主线程main)
生产者消费者例子:
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>#define ERR_EXIT(m)\do \{ \perror(m); \exit(EXIT_FAILURE); \}while(0)#define CONSUMERS_COUNT 2
#define PRODUCERS_COUNT 1pthread_mutex_t g_mutex;
pthread_cond_t g_cont;int iread;pthread_t g_thread[CONSUMERS_COUNT+PRODUCERS_COUNT];void* produce(void* arg)
{while(1){pthread_mutex_lock(&g_mutex);iread++; //生产printf("product iread=%d\n",iread);pthread_cond_signal(&g_cont);printf("produce is produat\n");pthread_mutex_unlock(&g_mutex);sleep(3);}return NULL;
}
void* consumer(void* arg)
{while(1){pthread_mutex_lock(&g_mutex);printf("consumer iread =%d\n",iread); while(iread==0) //需要等待生产者生产{pthread_cond_wait(&g_cont, &g_mutex);printf("iread is changed\n");}iread--; //消费sleep(1);pthread_mutex_unlock(&g_mutex);}return NULL;
} int main()
{int i;pthread_mutex_init(&g_mutex,NULL);pthread_cond_init(&g_cont,NULL);for(i=0; i< PRODUCERS_COUNT;i++){pthread_create(&g_thread[i],NULL,produce,(void*)i);}for(i=0; i< CONSUMERS_COUNT;i++){pthread_create(&g_thread[i+ PRODUCERS_COUNT],NULL,consumer,(void*)i);}for(i=0; i< PRODUCERS_COUNT+CONSUMERS_COUNT;i++){pthread_join(g_thread[i],NULL);}pthread_mutex_destroy(&g_mutex);pthread_cond_destroy(&g_cont);return 0;
}