大语言模型微调实践——LoRA 微调细节

1. 引言

近年来人工智能领域不断进步,大语言模型的崛起引领了自然语言处理的革命。这些参数量巨大的预训练模型,凭借其在大规模数据上学习到的丰富语言表示,为我们带来了前所未有的文本理解和生成能力。然而,要使这些通用模型在特定任务上发挥出色,还需借助微调技术。大语言模型的微调技术已经成为自然语言处理领域的一个焦点,其不断的演化和创新正引领着我们进入一个更加精细、个性化的文本处理时代。

在本文中,我们将选取目前大语言模型热点任务——代码生成,结合 StarCoder 模型微调实践介绍高效微调方法——LoRA。

2. LoRA 微调原理

论文:LoRA: Low-Rank Adaptation of Large Language Models

LoRA 基于大模型的内在低秩特性,增加旁路矩阵来模拟全参数微调,是目前最通用、效果最好的微调方法之一,而且能和其它参数高效微调方法有效结合。利用该方法对 175B GPT-3 微调,需要训练更新的参数量可以小到全量微调参数量的 0.01%。

cc06951f9521a210ce1526d2a28b0830.png

图1. LoRA原理   

上图为 LoRA 的实现原理,其实现流程为:

  1. 在原始预训练语言模型旁边增加一个旁路,做降维再升维的操作来模拟内在秩;

  2. 用随机高斯分布初始化 A,用零矩阵初始化B,训练时固定预训练模型的参数,只训练矩阵 A 与矩阵 B ;

  3. 训练完成后,将 B 矩阵与 A 矩阵相乘后合并预训练模型参数作为微调后的模型参数。

研究表明,Transformer 等神经网络包含许多执行矩阵乘法的密集层,这些权重通常具有满秩。预训练的语言模型具有较低的“本征维度(Instrinsic Dimension)”,并且可以和完整参数空间一样进行有效学习。受此启发,本文在微调过程中假设权重的更新也具有较低的“本征维度”。对于预训练模型的权重矩阵 ,通过低秩分解(Low-Rank Decomposition)来表示约束其更新。训练过程中 被固定不再进行梯度更新,只训练 和 ,其中 。训练结束后,更新参数为 。对于输入 ,模型的前向传播过程更新为 。

由于模型整体参数量不变,所以不会降低推理时的性能。作者通过实验比较了在内容理解任务、生成任务上的效果,相比全量微调参数量显著降低,性能上持平甚至超过,相比其他高效微调方法,增加参数量不会导致性能下降。需要注意的是此方法对低秩矩阵的秩数和目标模块的选择比较敏感,可能影响模型的性能和稳定性。使用LoRA微调有以下几个细节:

  1. 对哪些参数进行微调:基于 Transformer 结构,LoRA 只对每层的 Self-Attention 的部分进行微调,有 四个映射层参数可以进行微调。需要注意不同模型参数名称不同,像 StarCoder 模型 Multi-query 结构的 attention 层对应的参数名称是 attn.c_attn, attn.c_proj

  2. Rank(r) 的选取:Rank 的取值作者对比了 1-64,效果上 Rank 在 4-8 之间最好,再高并没有效果提升。不过论文的实验是面向下游单一监督任务的,因此在指令微调上根据指令分布的广度,Rank选择还是需要在 8 以上的取值进行测试。

  3. alpha 参数选取:alpha 其实是个缩放参数,训练后权重 merge 时的比例为 alpha/r

  4. 初始化:矩阵A是 Uniform 初始化,B 是零初始化,这样最初的 lora 权重为 0,所以 lora 参数是从头学起,并没有那么容易收敛。

3. LoRA 微调实践

本节以 StarCoder 微调为例,介绍使用 LoRA 微调的实践过程。

首先,StarCoder 是使用 86 种编程语言的 1 万亿个 token 训练,并在另外 35billion Python token 上微调出的模型,专注于解决编程问题,模型结构为:"GPTBigCodeForCausalLM",40层      decoder-only Transformer,Attention 层结构为 Multi-query,参数量约 15.5B。

3.1 环境配置

  1. 实例环境:A800 + python3.8 + torch2.0 + CUDA11.6

  2. python环境:主要坑在 transforemrs 和 peft,这两个包建议使用"Development Mode"安装

环境中主要包的版本:

tqdm==4.65.0
transformers=4.31.0.dev0
peft=0.4.0.dev0
datasets==2.11.0
huggingface-hub==0.13.4
accelerate==0.18.0

3.2 模型加载

以下代码主要整合自 alpaca-lora 项目和 StarCoder 的 finetune 项目。其实 LoRA 微调的代码本身并不复杂,但是对于如何加速大模型训练,如何以时间换空间的降低显存占用处理值得学习。模型初始化代码如下,get_peft_model 会初始化 PeftModel 把原模型作为 base 模型,并在各个 self-attention 层加入 LoRA 层,同时改写模型 forward 的计算方式。主要说下 load_in_8bitprepare_model_for_int8_trainingget_peft_model 分别做了哪些操作。

from accelerate import Accelerator
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, Trainermodel = AutoModelForCausalLM.from_pretrained(args.model_path,use_auth_token=True,use_cache=True,load_in_8bit=True,device_map={"": Accelerator().process_index},)model = prepare_model_for_int8_training(model)lora_config = LoraConfig(r=16,lora_alpha=32,lora_dropout=0.05,bias="none",task_type="CAUSAL_LM",target_modules = ["attn.c_proj", "attn.c_attn"]
)model = get_peft_model(model, lora_config)

模型加载时,load_in_8bit=True 的 8bit 量化优化的是静态显存,是 bitsandbytes 库赋予的能力,会把加载模型转化成混合 8bit 的量化模型。模型量化本质是对浮点参数进行压缩的同时,降低压缩带来的误差。8bit quantization是把原始 fp32(4字节)压缩到 int8(1字节)也就是 1/4 的显存占用。我们主要关注 attention 层的情况:

Parameter name: transformer.h.0.ln_1.weight
Data type: torch.float16Parameter name: transformer.h.0.ln_1.bias
Data type: torch.float16Parameter name: transformer.h.0.attn.c_attn.weight
Data type: torch.int8Parameter name: transformer.h.0.attn.c_attn.bias
Data type: torch.float16Parameter name: transformer.h.0.attn.c_proj.weight
Data type: torch.int8Parameter name: transformer.h.0.attn.c_proj.bias
Data type: torch.float16

通过第一层模型可以看出,这一步,attention 层 c_attn 和 c_proj 的 weight 设为 int8,其他为 fp16。

下面,prepare_model_for_int8_training 是对在 LoRA 微调中使用 LLM.int8() 进行了适配用来提高训练的稳定性,主要包括

  • layer norm 层保留 fp32 精度

  • 输出层保留 fp32 精度保证解码时随机 sample 的差异性

操作后区别如下:

Parameter name: transformer.h.0.ln_1.weight
Data type: torch.float32Parameter name: transformer.h.0.ln_1.bias
Data type: torch.float32Parameter name: transformer.h.0.attn.c_attn.weight
Data type: torch.int8Parameter name: transformer.h.0.attn.c_attn.bias
Data type: torch.float32Parameter name: transformer.h.0.attn.c_proj.weight
Data type: torch.int8Parameter name: transformer.h.0.attn.c_proj.bias
Data type: torch.float32

prepare_model_for_int8_training 还设置了 gradient_checkpointing=True,这是一个时间换空间的技巧。gradient checkpoint 的实现是在前向传播的过程中使用 torch.no_grad() 不存储中间激活值,降低动态显存的占用,而只保存输入和激活函数,当进行反向传播的时候,会重新获取输入并计算激活值用于梯度计算。因此前向传播会计算两遍,所以需要更多的训练时间。

第三步 get_peft_model 的操作后,区别如下:

Parameter name: base_model.model.transformer.h.0.attn.c_attn.lora_A.default.weight
Data type: torch.float32
Require grads: TrueParameter name: base_model.model.transformer.h.0.attn.c_attn.lora_B.default.weight
Data type: torch.float32
Require grads: TrueParameter name: base_model.model.transformer.h.0.attn.c_proj.lora_A.default.weight
Data type: torch.float32
Require grads: TrueParameter name: base_model.model.transformer.h.0.attn.c_proj.lora_B.default.weight
Data type: torch.float32
Require grads: True

在 attention 层的 c_attn 和 c_proj 添加 LoRA 层,数据类型为 fp32,并且需要梯度计算。

3.3 模型训练

模型训练的代码如下,和常规训练基本相同,需要注意模型存储和混合精度训练。StarCoder 项目推荐使用的数据集是 stack-exchange-instruction。Stack Exchange 是一个著名的问答网站,涉及不同领域的主题,用户可以在这里提出问题并从其他用户那里获得答案。这些答案根据其质量进行评分和排名。此数据集构建的即为问答对集合。可以在该数据集上微调语言模型,激活模型的问答技能。

train_dataset, eval_dataset = create_datasets(tokenizer, args)training_args = TrainingArguments(output_dir=args.output_dir,evaluation_strategy="steps",max_steps=args.max_steps,eval_steps=100,save_steps=100,per_device_train_batch_size=1,learning_rate=5e-6,gradient_accumulation_steps=16,fp16=True,report_to="wandb",)trainer = Trainer(model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data, callbacks=[SavePeftModelCallback, LoadBestPeftModelCallback)trainer.train()model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))

(1)模型存储

需要注意 PeftModel 重写了原始 model 的 save_pretrained 函数,只把 LoRA 层的权重进行存储,因此 model.save_pretrained 只会存储 LoRA 权重。

(2)混合精度训练

实现原理是并非所有变量都需要全精度存储,如果把部分中间变量转化成半精度,则计算效率会大幅提升,加上一些 GPU 对 fp16 计算做了优化,吞吐上比全精度会快 2~5 倍。不过只使用半精度训练会带来量化误差,所以混合精度训练前向传播时,模型权重、激活值和梯度都使用 fp16 进行存储,同时会拷贝一份模型权重以 fp32 存储,反向传播 optimizer 更新时会更新 fp32 的参数。因此其并不会节省内存,只会提高模型训练速度,同时使精度不下降太多。

3.4 merge 权重

LoRA 权重和原始模型权重进行合并,合并后的参数会存储成新的 bin 文件,然后和加载常规模型一样加载合并后的模型参数进行推理,不会引入推理延迟,权重合并关键代码如下:

base_model = AutoModelForCausalLM.from_pretrained(args.base_model_name_or_path,load_in_8bit=False,torch_dtype=torch.float16,device_map={"": "cuda:0"},
)
lora_model = PeftModel.from_pretrained(base_model,args.peft_model_path,device_map={"": "cuda:0"},torch_dtype=torch.float16,
)model = lora_model.merge_and_unload()lora_model.train(False)tokenizer = AutoTokenizer.from_pretrained(args.base_model_name_or_path)
model.save_pretrained(f"{args.save_model_path}-merged")
tokenizer.save_pretrained(f"{args.save_model_path}-merged")

至此,StarCoder 模型的 LoRA 微调过程就完成了。

3.5 模型推理

下面我们可以看一下激活问答能力后,模型的表现。

问题:Based on the torch framework, please write a handwritten digital processing model.

回答:

Answer: I think you can use the torch.nn.Conv2d module.

import torch
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.conv1 = nn.Conv2d(1, 1, 3, padding=1)self.conv2 = nn.Conv2d(1, 1, 3, padding=1)def forward(self, x):x = self.conv1(x)x = self.conv2(x)return xmodel = MyModel()

This is a simple model with two convolutional layers.

input = torch.randn(1, 1, 10, 10)
output = model(input)

This is how you can use it.

通过以上回答,我们可以看到精调后的模型激活了问答能力。

4. 总结

在本文中,我们探讨了 LoRA 微调方法,并以 StarCoder 模型的微调为例介绍了实践过程。通过实践过程的经验来为大家展示一些细节及需要注意的点,希望大家也能通过这种低资源高效微调方法微调出符合自己需求的模型。

参考

[1] LoRA: Low-Rank Adaptation of Large Language Models

[2] https://github.com/bigcode-project/starcoder

[3] https://github.com/tloen/alpaca-lora

[4] 苏剑林,梯度视角下的LoRA:简介、分析、猜测及推广


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu修改默认文件权限umask

最近在使用ubuntu的过程中发现一个问题: 环境是AWS EC2,登录用户ubuntu,系统默认的umask是027,修改/etc/profile文件中umask 027为022后,发现从ubuntu用户sudo su过去root用户登录查询到的umask还是027,而…

直播系统源码协议探索篇(二):网络套接字协议WebSocket

上一篇我们分析了直播平台的会话初始化协议SIP,他关乎着直播平台的实时通信和多方互动技术的实现,今天我们来讲另一个协议,叫网络套接字协议WebSocket,WebSocket基于TCP在客户端与服务器建立双向通信的网络协议,并且可…

基于swing的小区物业管理系统java jsp社区报修信息mysql源代码

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于swing的小区物业管理系统 系统有1权限&#xff1…

跨境出海:如何轻松应对多账号管理

在如今的跨境电商时代,成功经营一个线上店铺不再仅仅需要商品和服务,还需要精通广告投放、营销策略等多个领域。 然而,老练的电商从业者知道,如果不重视平台账号的管理方法,可能会导致店铺或营销账号被关联&#xff0…

Java面向对象三大特性之多态及综合练习

1.1 多态的形式 多态是继封装、继承之后,面向对象的第三大特性。 多态是出现在继承或者实现关系中的。 多态体现的格式: 父类类型 变量名 new 子类/实现类构造器; 变量名.方法名(); 多态的前提:有继承关系,子类对象是可以赋…

【FAQ】视频云存储/安防监控EasyCVR视频汇聚平台如何通过角色权限自行分配功能模块?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、…

Linux问题--docker启动mysql时提示3306端口被占用

问题描述: 解决方法: 1.如果需要kill掉mysqld服务可以先通过 lsof -i :3306 2. 查询到占用3306的PID,随后使用 kill -15 PID 来kill掉mysqld服务。 最后结果

前端通信(渲染、http、缓存、异步、跨域)自用笔记

SSR/CSR:HTML拼接?网页源码?SEO/交互性 SSR (server side render)服务端渲染,是指由服务侧(server side)完成页面的DOM结构拼接,然后发送到浏览器,为其绑定状…

高压放大器在液晶弹性体中的应用研究

液晶弹性体是一种有机高分子材料,具有良好的可控变形性能和反应速度,因此在显示器、光学器件等领域得到了广泛的应用。高压放大器作为一种电子设备,可以将输入信号进行放大,从而为液晶弹性体的驱动提供足够的强度。下面安泰电子将…

【学会动态规划】摆动序列(27)

目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 动态规划怎么学? 学习一个算法没有捷径,更何况是学习动态规划, 跟我…

Git企业开发控制理论和实操-从入门到深入(一)|为什么需要Git|Git的安装

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/cate…

React项目build打包后,页面空白的解决方案

问题描述: React项目执行 build 命令后,在本地服务器打开页面 是空白的,而且控制台报错 如下图所示 解决方法 打开根目录下的 package.json 文件,添加如下代码 {"name": "testproject","version"…

LAMP 架构及Discuz论坛与Wordpress博客搭建

目录 1 LAMP 配置与应用 1.1动态资源与语言 1.2 LAMP 架构的组成 1.2.1 主要功能 2 编译安装Apache http 服务 2.1 环境准备 2.1.1 关闭防火墙及selinux服务 2.1.2 安装依赖环境 2.2 安装软件包 2.2.1 解压软件包 2.2.2 移动apr包 apr-util包到安装目录中,并…

养号自动化,指纹浏览器和RPA机器人解除烦恼

在这个充满科技魔力的时代,社交媒体已经成为人们生活的一部分,而Facebook更是我们分享欢乐、联络亲友的重要平台。然而,随之而来的是一个棘手的问题:如何保持账号的活跃度,而又不被沉重的养号工作压垮?别担…

【数据结构练习】链表面试题锦集一

目录 前言: 1. 删除链表中所有值为key的节点 方法一:正常删除,头结点另外讨论 方法二:虚拟头结点法 方法三:递归 2.反转链表 方法一:双指针迭代 方法二:递归法解析: 3.链表的中间结点 方法…

Fastadmin框架 聚合数字生活抵扣卡系统v2.8.6

【2.8.6更新公告】 1.【优化】优化已知问题。 2.【新增 】新增区县影院。

R语言实现网状Meta分析(1)

#R语言实现网状Meta library(gemtc) help(package"gemtc") data<-gemtc::smoking #注意按照实例格式编写数据 net<-mtc.network(data$data.ab) #网状图 plot(net,mode"circle",displaylabelsT,boxed.labelF) summary(net) #网状model model<-mtc…

NineData中标移动云数据库传输项目(2023)

近日&#xff0c;玖章算术NineData智能数据管理平台成功中标《2023年移动云数据库传输服务软件项目》&#xff0c;中标金额为406万。这标志着玖章算术NineData平台已成功落地顶级运营商行业&#xff0c;并在数据管理方面实现了大规模应用实践。 NineData中标2023移动云数据库传…

Kali 网络参数的配置

手工方式 Wired 有线 Woreless 无线 图形化的网络管理器&#xff08;依赖的服务&#xff1a;NetworkManager&#xff09; ┌──(root㉿kali)-[~] └─# systemctl status NetworkManager ● NetworkManager.service - Network ManagerLoaded: loaded (/lib/systemd/system/N…

JDK 核心jar之 rt.jar

一、JDK目录展示 二、rt.jar 简介 2.1.JAR释义 在软件领域&#xff0c;JAR文件&#xff08;Java归档&#xff0c;英语&#xff1a;Java Archive&#xff09;是一种软件包文件格式&#xff0c;通常用于聚合大量的Java类文件、相关的元数据和资源&#xff08;文本、图片等&…