【深度学习 | 数据可视化】 视觉展示分类边界: Perceptron模型可视化iris数据集的决策边界

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

决策边界可视化

Perceptron

在训练好高精度的模型,我们可以通过有效的可视化直观看到分类效果,相比于混淆矩阵等分类指标更加直观。如下示例就可以看出iris数据集的Sepal (花萼)相比 Petal (花瓣)更难分类

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
# 加载鸢尾花数据集 
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data[:,2:], data.target, test_size=0.2)# 创建并训练感知器模型
perceptron = Perceptron()
perceptron.fit(X_train, y_train)# 绘制散点图(每个类别用不同颜色表示)
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train) # just draw the length and width of sepal ,
# and the c paremeter get the array will draw different  color in different digital
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')# 添加决策边界到图中
x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max), np.arange(y_min,y_max)) # depend on the two x and y lenth decide the array shape return the x and y axis np-array with interval 1 
# both have the same shape
# print(np.arange(x_min, x_max))
# print(np.arange(y_min,y_max))
# print(xx)
# print(xx.ravel())
# print(yy)
# print(yy.ravel())
Z = perceptron.predict(np.c_[xx.ravel(), yy.ravel()]) # draw the decision boundary (predict the per coordinate pair )
# print(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) # replace to the every grid
print(Z)
plt.contourf(xx ,yy ,Z,alpha=0.3)
plt.show()
accuary = sum(perceptron.predict(X_test) == y_test)/len(y_test) 
print(accuary)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vtt9903J-1692410092565)(data visualization.assets/image-20230819093519419.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NP4qVAMU-1692410092566)(data visualization.assets/image-20230819093953006.png)]

对应的Prediction grid (可以看到反过来就是绘制等高线对应的图片):

[[0 1 1 1 1 1 1 1][0 0 1 1 1 1 1 1][0 0 0 1 1 1 1 1][2 2 2 2 2 2 2 1][2 2 2 2 2 2 2 2]]

详解使用函数:

np.meshgrid()

np.meshgrid()函数用于生成一个二维网格,它以两个一维数组作为参数,分别表示 x 轴和 y 轴上的坐标点。该函数返回两个二维数组,这些数组中的每个元素都代表了在坐标平面上某一点的 x 和 y 坐标。

让我们来详细解释一下np.meshgrid()函数的具体用法:

xx, yy = np.meshgrid(np.arange(x_min, x_max), np.arange(y_min,y_max))
  • np.arange(x_min, x_max):这是一个 NumPy 函数,用于创建一个从 x_minx_max - 1 的连续整数序列。它将作为参数传递给 np.meshgrid() 函数,并指定了在 x 轴方向上生成网格点所需的范围。

  • np.arange(y_min,y_max):类似地同上

  • xx, yy = np.meshgrid(...):通过调用np.meshgrid(np.arange(x_min, x_max), np.arange(y_min,y_max))可以得到 xx 和 yy 这两个变量。其中 xx 是一个与 y 方向长度相同、横轴值变化而纵轴不变(即 y 方向不变)的二维数组;yy 是一个与 x 方向长度相同、纵轴值变化而横轴不变(即 x 方向不变)的二维数组。

这个函数对于在整个坐标空间上进行预测和可视化非常有用,因为它生成了一个包含所有可能组合的坐标点网格。

np.ravel() & np.c_

np.ravel()函数用于将多维数组展平为一维数组。它会按照 C 风格(行优先)的顺序来展开数组。

np.c_()用于按列连接两个或多个数组。它可以将一维数组沿着列方向进行拼接生成一个新的二维数组

plt.contourf()

plt.contourf()用于绘制等高线填充图。它可以根据数据的值来为不同区域着色,并在图表上显示出这些颜色区域之间的边界。

让我们详细解释一下plt.contourf()函数的具体用法:

plt.contourf(X, Y, Z)
  • X:表示 x 坐标点的二维数组或网格矩阵。

  • Y:表示 y 坐标点的二维数组或网格矩阵。

  • Z:表示对应于 (X, Y) 网格点位置处某种属性(例如,高度、温度等)的数值。

通过传递以上参数给plt.contourf()函数,我们可以生成一个由等高线填充区域组成的图表。其中每个填充区域都代表了相应坐标点处属性数值所在范围内部分。

此外,您还可以使用其他参数来自定义等高线填充图:

  • levels: 通过设置 levels 参数来指定要显示哪些特定数值范围内部分,默认情况下会自动选择合适数量和范围。

  • colors: 可以使用 colors 参数来指定所使用颜色映射(colormap),也可以直接传递一个颜色列表作为参数进行手动设置。

通过使用plt.contourf()函数,您可以以视觉方式展示二维数据的分布情况,并更好地理解和呈现数据。

总结

总体而言,整个可视化原理也比较清晰明了。大概流程如下:

  1. 根据对应的数据数组特征的Min和Max确定对应的数据范围(Arrange)
  2. 根据数据范围通过meshgrip生成对应表格二维数组(返回每一个点的x和y的值(shape (len(x),len(y))
  3. 对数据进行铺平操作(np.ravel())和拼接成数组(np.c_)对作为特征数据进行预测网格的每一个点。
  4. 通过plt.contourf对网格点的每一个预测结果作为其属性画不同颜色等高线实现决策边界的绘制。🎉

在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48912.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring源码深度解析三 (MVC)

书接上回 10.MVC 流程&源码剖析 * 问题1:Spring和SpringMVC整合使用时,会创建一个容器还是两个容器(父子容器?) * 问题2:DispatcherServlet初始化过程中做了什么? * 问题3:请求…

移动硬盘出现两份多个分区并无法使用的情况

文章目录 问题描述解决方案发现问题 问题描述 移动硬盘借给组内同学装Ubuntu之后,出现多个分区,windows10操作系统识别到两个分区并且无法读取,并且出现格式化提醒,但是由于只读属性,而无法格式化的情况。注意这两个分…

fastdeploy部署多线程/进程paddle ocr(python flask框架 )

部署参考:https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/multi_thread/python/pipeline/README_CN.md 安装 cpu: pip install fastdeploy-python gpu :pip install fastdeploy-gpu-python #下载部署示例代码 git cl…

ElementUI Table 翻页缓存数据

Element UI Table 翻页保存之前的数据,网上找了一些,大部分都是用**:row-key** 和 reserve-selection,但是我觉得有bug,我明明翻页了…但是全选的的个框还是勾着的(可能是使用方法不对,要是有好使的…请cute我一下…感谢) 所以自己写了一个… 思路: 手动勾选的时候,将数据保存…

UbuntuDDE 23.04发布,体验DeepinV23的一个新选择

UbuntuDDE 23.04发布,体验DeepinV23的一个新选择 昨晚网上搜索了一圈,无意看到邮箱一条新闻,UbuntuDDE 23.04发布了 因为前几天刚用虚拟机安装过,所以麻溜的从网站下载了ISO文件,安装上看看。本来没多想,…

QT connect使用简单介绍

如图,首先 connect是线程安全的。其次它有很多重载,当然最重要的还是QT4连接和QT5连接的区别,这个函数重载表示connect函数也是支持lambda函数的。 connect(const QObject *sender, PointerToMemberFunction signal, Functor functor)connec…

在树莓派上搭建WordPress博客网站,并内网穿透发布到公网

目录 概述 安装 PHP 安装MySQL数据库 安装 WordPress 设置您的 WordPress 数据库 设置 MySQL/MariaDB 创建 WordPress 数据库 WordPress configuration 将WordPress站点发布到公网 安装相对URL插件 修改config.php配置 支持好友链接样式 定制主题 🎈个…

Python功能制作之简单的音乐播放器

需要导入的库: pip install PyQt5 源码: import os from PyQt5.QtCore import Qt, QUrl from PyQt5.QtGui import QIcon, QPixmap from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent from PyQt5.QtWidgets import QApplication, QMainWind…

【C++】unordered_map和unordered_set的使用 及 OJ练习

文章目录 前言1. unordered系列关联式容器2. map、set系列容器和unordered_map、unordered_set系列容器的区别3. unordered_map和unordered_set的使用4. set与unordered_set性能对比5. OJ练习5.1 在长度 2N 的数组中找出重复 N 次的元素思路分析AC代码 5.2 两个数组的交集思路分…

Linux 压缩解压(归档管理):tar命令

计算机中的数据经常需要备份,tar是Unix/Linux中最常用的备份工具,此命令可以把一系列文件归档到一个大文件中,也可以把档案文件解开以恢复数据。 tar使用格式 tar [参数] 打包文件名 文件 tar命令很特殊,其参数前面可以使用“-”&…

linux下系统问题排查基本套路

文章目录 总结常用命令原文GC相关网络TIME_WAITCLOSE_WAIT 总结常用命令 top 查找cpu占用高的进程ps 找到对应进程的pidtop -H -p pid 查找cpu利用率较高的线程printf ‘%x\n’ pid 将线程pid转换为16进制得到 nidjstack pid |grep ‘nid’ -C5 –color 在jstack中找到对应堆栈…

3D WEB轻量化引擎HOOPS产品助力NAPA打造船舶设计软件平台

NAPA(Naval Architectural PAckage,船舶建筑包),来自芬兰的船舶设计软件供应商,致力于提供世界领先的船舶设计、安全及运营的解决方案和数据分析服务。NAPA拥有超过30年的船舶设计经验,年营业额超过2560万欧…

镭速传输助力广电行业大数据高效分发,提升智慧融媒水平

随着互联网技术如大数据、人工智能、云计算等和移动通信技术如5G等的快速进步和实际应用,媒体行业发展正式进入智慧时代,智慧融媒成为媒体融合发展的新阶段,全面应用在超高清、云服务、融媒演播、VR等新兴技术为代表的各个方面。 以上技术的…

优思学院|公司质量的重要性与六西格玛的应用

在现代商业环境中,公司的成功与否往往取决于其产品或服务的质量水准。质量不仅是公司的一个重要组成部分,还直接影响着公司的声誉和消费者认可度。保持高质量的商品和服务有助于建立客户信任,维护品牌形象,并确保长期的业务增长。…

JavaWeb+JSP+SQL server学生学籍管理系统设计与实现(源代码+论文+开题报告+外文翻译+答辩PPT)

需求分析 本系统主要是针对各个高校的学生学籍进行管理,系统满足以下几点要求: 系统安全性。由于此系统中的操作都是由用户操作的,所以对于用户的权限设置比较严格。对于数据库,设置了不同用户的权限,不同权限进入不…

封装公共el-form表单(记录)

1.公共表单组件 //commonForm.vue <script> import {TEXT,SELECT,PASSWORD,TEXTAREA,RADIO,DATE_PICKER } from /conf/uiTypes import { deepClone } from /utils export default {name: GFormCreator,props: {config: { // title/itemstype: Object,required: true}}…

UE4/5Niagara粒子特效之Niagara_Particles官方案例:1.1->1.4

目录 1.1-Simple Sprite Emitter ​编辑 发射器更新 粒子生成 粒子更新 1.2-Simple Sprite Emitter 发射器更新 粒子生成 粒子更新 渲染 1.3-Simple GPU Emitter 属性 发射器更新 粒子生成 粒子更新 1.4-Sprite Facing 发射器更新 粒子生成 粒子更新 通过对官方…

wazuh初探系列二 :Wazuh功能初步探知

目录 介绍 主动响应&#xff1a; 监控日志 "bin"目录用途&#xff1a; 告警信息&#xff1a; etc 目录中包含了以下主要的配置文件&#xff1a; ruleset&#xff1a;自带规则库&#xff0c;建议不改 rules目录: 解码器&#xff1a; 登录日志格式&#xff1a…

财务数据分析模板有哪些,能满足决策吗?

虽然企业的业务经营各有不同&#xff0c;但在财务数据分析上却有着相似的需求与流程&#xff0c;因此财务数据分析是可以形成一套标准化模板的。奥威BI数据可视化工具从多年丰富的BI项目中总结经验&#xff0c;形成一套标准化、系统化的财务数据分析模板&#xff0c;内含资产负…

CentOS中Oracle11g进程有哪些

最近遇到Oracle数据库运行过程实例进程由于某种原因导致中止的问题&#xff0c;专门看了下正常Oracle数据库启动后的进程有哪些&#xff0c;查阅资料了解了下各进程的作用&#xff0c;记录如下。 oracle 3032 1 0 07:36 ? 00:00:00 ora_pmon_orcl oracle …