【核磁共振成像】傅里叶重建

目录

  • 一、傅里叶重建
  • 二、填零
  • 三、移相
  • 四、数据窗函数
  • 五、矩形视野
  • 六、多线圈数据重建
  • 七、图像变形校正
  • 八、缩放比例
  • 九、基线校准


在这里插入图片描述

长TR,长TE,是T2加权像;
短TR,短TE,是T1加权像;
长TR,短TE,是PD加权像。


一、傅里叶重建

  磁共振图像反映的是组织的信号强度。在图像中,如果越白或者越亮,则代表组织的信号强度越高
  磁共振的不同序列反映的是不同组织对比或者叫做不同参数。磁共振图像我们一般把它叫做“加权像”,Weighted Image。
   加权或者权重代表突出重点,那种成分占的权重(比例)大。在磁共振成像中,组织所固有的参数特性(T1、T2、PD等)均对磁共振图像的信号强度有所贡献,但是一副磁共振图像,如果反映了各种组织参数在里面,那么就等于没有反映任何指标,因为都是在对图像信号强度做贡献,我们不知道那种贡献大,通过看图像明暗度,不能判断。
  所以,磁共振图像,应该重点反映那种组织对图像的贡献最大。一般,我们是通过调整参数,使磁共振图像主要反映组织某一个方面的特性,这样我们就能够进行判读了。另外,我们不可能得到一个纯粹的只反映组织一个特性的磁共振图像。所以,这也是为什么磁共振图像,很多我们会叫做加权像的原因。
  常规的磁共振图像主要有以下几种:
  T1加权像(T1WI):主要是反映组织之间T1差别的图像,也就是主要反映 组织之间纵向弛豫差别的图像
  T2加权像(T2WI):主要是反映组织之间T2差别的图像,也就是主要 反映组织之间横向弛豫差别的图像
  PD(质子密度)加权像(PDW):主要是反映 组织之间质子密度,也就是氢质子含量差别的图像。


二、填零

  填零:若K空间为是按直线轨迹(笛卡尔方格)全采样,2D或3D-IFT要使用的FFT需要输入数据为2的整数次幂采集的数据通过补零来满足这个条件
  填零导致图像按sinc插补的加采样,在显示矩阵中提供sinc插补像素。填零不增加任何信息含量,不影响SNR,不影响图像的实际分辨率,但填零能给图像信号一个平滑“延申”或降低由“部分体积效应”引起的块状伪影,从而提高图像的表观图像分辨率
  但由于FT长度增加,重建时间增加。对于大矩阵图像数据可能使显示或存档的系统函数卡壳,还可能增大图像中的截断伪影(Gibbs跳动) 的显著性(Gibbs伪影出现的原因是采样不足,或者空间分辨率不够大,或者体素还不够小)。
在这里插入图片描述

经一维傅里叶变化后需经过内插

  部分容积效应:CT图像上各个像素的数值代表相应单位组织全体的平均CT值,它不能如实反映该单位内各种组织本身的CT值。

  Gibbs伪影又叫截断伪影或者叫环形伪影,跟图像的空间分辨率有关。一副图像是包含了无数个(无限个)空间频率的但是我们在通过系统采集图像信号的时候,我们只能采样有限数目的频率。简单来讲就是,我们 用有限的数字体素来描述图像。 在图像的高对比度界面,由于图像变化太大,而有限的像素无法描述这种大变化的时候,则会产生一种伪影,我们把这种伪影叫做 截断伪影,或者 环形伪影,也叫 Gibbs伪影,振铃伪影。 根据这种伪影的特点,它一般出现在图像高对比度界面的周围,形成交替的亮带和暗带这种伪影可以出现在相位编码方向,也可以出现在频率编码方向。但是出现在相位编码方向的概率大。因为,相位编码方向步级决定扫描时间,一般来说,相位编码方向存在采用不足的可能性比频率编码方向大


三、移相

  将序列值输入到FFT时,算法假定DC点(即零频、零时间点)为起始点S0。
  MRI数据一般不是按FFT期望的输入次序采集和储存的。当应用FFT到K空间数据时,需要调整数据列次序以适合FFT的要求,普遍情况是存储数据以DC点位于K空间中点,而在FFT后进行相位校正以补偿N/2位移
在这里插入图片描述

原始K空间数据用作FFT的输入
序列可以看作FFT的输入的周期复制相对于传统MR(直流DC在中心被移动了N/2点)

  FFT算法假定输入、输出数据相对于传统次序移动了N/2。这种移动是 在傅里叶共轭域一个符号交替实现的。符号交替输入给输出移动。对于模重建,FT之后符号交替步可以跳动,但FT之前必须进行符号交替。

  MRI数据不是按FFT期望的输入次序采集和储存的,当应用FFT到K空间数据时,这数据要调整次序以适合FFT的要求。普遍情况是储存数据 以DC点位于Kx、Ky、Kz方向的中点(假定全K空间采样),而在FFT之后进行相位校正以补偿N/2位移。类似的,FFT算法的输出数据序列是以DC值作为起点而不是在中心,这就需要更正次序,移动DC点回到中心(在FFT之前加一个位移就可以自动完成)。


四、数据窗函数

  截断伪影当测量数据只包含磁化强度傅里叶分量完全数据的低频子集时,这种重建的图像包含上冲跳动伪影(特别是靠近锐变的边缘处)。
  切趾:把K空间数据乘以一个能平滑衰减高空间频率的滤波器或窗函数,就能降低跳动伪影。

  1D Tukey窗:适用于MRI的K空间数据的一个窗函数的例子是余弦锥型或Turkey窗,此窗给出的点扩散函数的空间分辨率是各向异性的,即在图像中随方向而变。
在这里插入图片描述

1D Tukey窗 此窗给出的点扩散函数的空间分辨率是各向异性的 即在图像中随方向而变

  不可分割的窗:一个普通的函数时用具有与方向角无关的各向同等截止点Kc的窗,给出各向同性空间分辨率。
在这里插入图片描述

2F可分离Tukey窗,K空间矩阵256*256

  任何磁共振图像,都存在Gibbs伪影如果图像的采样点非常大,那么产生的Gibbs伪影的条纹就近似于无限薄,条纹之间距离近似于无限接近,也就没有伪影了。首要的方法是:减小体素,提高空间分辨率,提高采样,因为提高分辨率,会增加扫描时间,故不采用这种做法。在飞利浦系统中,可以把环形过滤Ringing Filter打开,这样会尽量消除这个伪影。

  点扩展函数(point spread function PSF)描述了成像系统对点源或点对象的响应。点目标的扩散/模糊程度是衡量成像系统质量的一个指标。一个复杂对象的像可以被看作是真实对象和PSF的卷积。然而,当被检测到的光是相干的(coherent),图像在复数域( complex field)的形成是线性的。记录灰度图(intensity image),然后可以引发 cancellations 或其他非线性效应。


五、矩形视野

  很多解剖截面可用椭圆来近似,即矩形视野,由于ADC采样速度足够高,安排频率编码在长FOV方向而相位编码在短FOV方向
  为避免读出方向混叠伪影,可采用过采样技术;要避免相位编码方向的混叠,可采用空间预饱和
  一般有三种方式执行傅里叶变换
  1、离散傅里叶变换(DFT)。但DFT比FFT
  2、K空间内插对于相位编码数据维给出2的整数次幂,然后用FFT。物体是紧支的,sinc内插费时,更快的方法是 方格化。从K空间数据方格化再取样产生混叠,有时造成图像质量损失
  3、相位编码数据维通过填零给出2的整数次幂,然后用FFT,并在图像空间内插以恢复正确的比例。
  奈奎斯特频率定义为信号带宽的两倍。如果实际采样频率高于奈奎斯特频率,即为过采样低于奈奎斯特采样频率进行采样就称为欠采样。过采样能够提高分辨率和信噪比SNR,并且通过放宽抗混叠滤波器的性能要求,有助于避免混叠和相位失真
  部分容积效应:CT图像上各个像素的数值代表相应单位组织全体的平均CT值,它不能如实反映该单位内各种组织本身的CT值。

  空间预饱和脉冲用于抑制来自成像视野内解剖区域的不良信号。尽管在大脑成像中并不常用,但可用于抑制来自邻近血管的信号,从而最大程度地减少了重影伪影。


六、多线圈数据重建

  当多线圈多接受通道采集数据时,各线圈通道的复数像分别单独重建,然后用其平方和的平方根计算出最终图像。如果各线圈的图像是Ij(x,y)(j是线圈编号),则最终的2D图像是:
在这里插入图片描述
  由平方和近似造成的SNR损失只有百分之几,通过用下式近似这个接受线圈B1场:
在这里插入图片描述


七、图像变形校正

  通过折中线性度、减少高度线性区的体积,可达到更高的梯度幅度和斜升率,这样的折中对很多不需要大体积的应用如脑fMRI很有吸引力。因距磁体距离的不同而造成的图像在尺寸和强度上变形,可根据梯度场设计数据或测量数据可以进行校正。而其他由梯度非线性造成的变形一般都由及其自动校正。
在这里插入图片描述

变形的图形
![在这里插入图片描述](https://img-blog.csdnimg.cn/eb5e1dea66164f298df81a7b4938462c.png)
校正后的图形

  不同评价指标(即特征向量中的不同特征就是所述的不同评价指标)往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果。为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。其中,最典型的就是数据的归一化处理

  简而言之,归一化的目的就是使得预处理的数据被限定在一定的范围内(比如[0,1]或者[-1,1]),从而消除奇异样本数据导致的不良影响

   奇异样本数据 是指相对于其他输入样本特别大或特别小的样本矢量(即特征向量)。奇异样本数据的存在会引起训练时间增大,同时也可能导致无法收敛,因此,当存在奇异样本数据时,在进行训练之前需要对预处理数据进行归一化;反之,不存在奇异样本数据时,则可以不进行归一化。
  (1)归一化后加快了梯度下降求最优解的速度,也即加快训练网络的收敛性;
  (2)归一化有可能提高精度。


八、缩放比例

  MRI信噪比正比于像素体积,也正比于总采集时间(正比于K空间中Kx、Ky、Kz方向采样点数Nx、Ny、Nz及激发次数Nex)的平方根,由下式表示:
在这里插入图片描述
  对于某些接收机硬件,一个DC偏移可能出现在测量的K空间数据中。RF激发脉冲的相位循环可以消除基线;也可以在数据采集采集的开始或结束时测量基线,然后从原始数据中减掉


九、基线校准

  测量基线是在不加梯度和RF的情况下采集数据。选择测量时间给出基线估计(可忽略噪声)。也可以不采集额外的数据,而是在K空间中(FID或回波)对最后几个点取平均来估计基线。一个关键的假定是磁化强度在K空间行的末尾已经衰减或散相,剩余的信号相应到DC偏移。
在这里插入图片描述

傅里叶重建步骤流程

  DC是Deflection Coefficient的缩写,是偏因径系数;DC偏移是指由于输入设备的某些问题,导致电流波形偏移了中轴线走向X或者Y方而产生的现象

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48809.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Debootstrap 教程

文章目录 Debootstrap 教程安装 debootstrap使用 debootstrap运行 debootstrap进入新的系统结束语 Debootstrap 教程 debootstrap 是一个用于在 Debian-based 系统上创建一个基本的 Debian 系统的工具。它可以用于创建 chroot 环境、容器或者为新的系统安装做准备。 安装 deb…

oracle警告日志\跟踪日志磁盘空间清理

oracle警告日志\跟踪日志磁盘空间清理 问题现象: 通过查看排查到alert和tarce占用大量磁盘空间 警告日志 /u01/app/oracle/diag/rdbms/orcl/orcl/alert 跟踪日志 /u01/app/oracle/diag/rdbms/orcl/orcl/trace 解决方案: 用adrci清除日志 确定目…

item_search_img-按图搜索淘宝商品(拍立淘)

一、接口参数说明: item_search_img-按图搜索淘宝商品(拍立淘),点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_search_img 名称类型必须描…

OpenAI推出GPT-3.5Turbo微调功能并更新API;Midjourney更新局部绘制功能

🦉 AI新闻 🚀 OpenAI推出GPT-3.5Turbo微调功能并更新API,将提供GPT-4微调功能 摘要:OpenAI宣布推出GPT-3.5Turbo微调功能,并更新API,使企业和开发者能够定制ChatGPT,达到或超过GPT-4的能力。通…

Ribbon 源码分析

Ribbon 源码分析 Ribbon Debug 分析 断点 LoadBalancerInterceptor LoadBalancerInterceptor 实现了 ClientHttpRequestInterceptor 接口,重写了其中的 intercept 方法,用来拦截请求; 获取原始的 uri 和 服务名,调用 LoadBalanc…

Docker Compose

一、Docker-Compose使用场景二、Docker-Compose简介三、Docker-Compose 部署四、YAML 文件格式及编写注意事项五、Docker-Compose配置常用字段六、Docker-Compose 常用命令七、Docker-Compose 文件结构八、Docker-Compose 撰写nginx8.1 准备依赖文件8.2 编写配置文件docker-com…

基于串口透传模块,单片机无线串口空中下载测试

基于串口透传模块,单片机无线串口空中下载测试 ✨无线串口下载,其本质还是串口下载方式,只不过省去了单片机和ISP上位机工具之间的物理有线连接,中间的数据通过无线串口透传模块进行数据中转,传递到单片机串口上。串口…

爬虫借助代理会让网速快点吗?

亲爱的程序员朋友们,你曾经遇到过爬虫网速慢的情况吗?别着急!今天我将和你一起探讨一下使用代理是否可以加速爬虫,让我们一起进入这个轻松又专业的知识分享。 一、原因和机制的解析 1.IP限制 某些网站为了保护资源和防止爬虫行…

认识Redis

1. 前置操作 以下内容基于CentOS 1.1. 安装 yum -y install redis 1.2. 启动 redis-server /etc/redis.conf & 1.3. 打开 redis-cli 1.4. 停止 redis-cli shutdown 1.5. 设置远程连接 修改 /etc/redis/redis.conf 修改 bind 127.0.0.1为 bind 0.0.0.0 1.6. 使用…

适合国内用户的五款ChatGPT插件

众所周知使用ChatGPT3.5需要使用魔法且不稳定,订阅ChatGPT4.0每月需要支付20美元,并且使用次数有限制。对于那些不想每年花费240美元(超过1500元人民币)来使用GPT4.0的朋友们来说,还有别的办法吗? 答案是&…

web基础+HTTP协议+httpd详细配置

目目录录 一、Web基础1.1 HTML概述1.1.1 HTML的文件结构1.1.2 HTML中的部分基本标签 1.3 MIME1.4 URI 和 URL1.4 定义1.4.2 URI 和 URL 的区别 二、静态资源和动态资源2.1 静态资源2.2 动态资源 三、HTTP协议3.1 HTTP协议简介3.2 HTTP协议版本3.2 HTTP方法3.3 HTTP请求访问的完…

MySQL 主从配置

环境 centos6.7 虚拟机两台 主:192.168.23.160 从:192.168.23.163 准备 在两台机器上分别安装mysql5.6.23,安装完成后利用临时密码登录mysql数据修改root的密码;将my.cnf配置文件放至/etc/my.cnf,重启mysql服务进…

API自动化管理: 从繁琐到轻松

在数字化时代,API(应用程序编程接口)在软件开发中扮演着至关重要的角色。然而,API管理可能会变得十分繁琐,耗费大量时间和资源。那么,如何实现API自动化管理,从而节省时间、提高效率&#xff0c…

基于SpringCloud的会议室预约系统Java基于微服务的会议室报修系统【源码+lw】

💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、微信小程序、Python、Android、大数据等,大家有这一块的问题可以一起交流! 💕&#x1f495…

Wlan——Wlan服务集与Wlan漫游的概念

目录 Wlan服务集的基本概念 无线漫游基本概念 无线漫游的分类 无线漫游的数据转发路径 二层本地转发漫游 三层本地转发漫游 二/三层集中转发漫游 无线漫游注意事项 Wlan服务集的基本概念 概念 全称 描述 BSS 基本服务集BSS 无线网络的基本服务单元 可以理解为1个A…

Git:本地仓库创建和远程绑定

创建远程仓库 登录git网站,创建一个远程仓库 创建时可以选择仓库属性,公共/私有。仓库命名之类。创建完毕后可以在网站上看到仓库所在网址。 创建本地仓库 打开一个文件夹,鼠标右键Git Bash Here,打开git的命令行 git init//…

PyTorch Lightning:通过分布式训练扩展深度学习工作流

一、介绍 欢迎来到我们关于 PyTorch Lightning 系列的第二篇文章!在上一篇文章中,我们向您介绍了 PyTorch Lightning,并探讨了它在简化深度学习模型开发方面的主要功能和优势。我们了解了 PyTorch Lightning 如何为组织和构建 PyTorch 代码提…

QT基础教程之二 第一个Qt小程序

QT基础教程之二 第一个Qt小程序 按钮的创建 在Qt程序中&#xff0c;最常用的控件之一就是按钮了&#xff0c;首先我们来看下如何创建一个按钮 QPushButton * btn new QPushButton; 头文件 #include <QPushButton>//设置父亲btn->setParent(this);//设置文字btn-&g…

SQL两张表数据对比

表1&#xff1a; 表2&#xff1a; 1、查询两表的数据差异&#xff1a; # 查询表1中有但表2没有的数据 SELECT DATA FROM data1 WHERE ( DATA ) NOT IN ( SELECT DATA FROM data2 );# 查询表2中有但表…

xml对象与字符串互换

很多老系统&#xff0c;特别是C的系统&#xff0c;可能数据结构采用的xml。xml对java来说没有什么&#xff0c;但是C来说&#xff0c;可能还有个顺序问题&#xff0c;毕竟c没有那么多通用类库。 2 xstream 先说依赖&#xff0c;我本来不想升级&#xff0c;但是有个问题卡者就给…